Cabernet Sauvignon Red Must Processing by UHPH to Produce Wine Without SO2: the Colloidal Structure, Microbial and Oxidation Control, Colour Protection and Sensory Quality of the Wine
Fecha
2022-03-04Autor
Estado
info:eu-repo/semantics/publishedVersionMetadatos
Mostrar el registro completo del ítemResumen
. A cryo-macerated must of V. vinifera L. cabernet sauvignon was processed by ultra-high-pressure homogenisation (UHPH) sterilisation without the use of SO2. The UHPH treatment of the must was carried out continuously at a pressure of 300 MPa and reaching a maximum temperature of 77 °C for less than 0.2 s. The colloidal structure of the UHPH must was evaluated by atomic force microscopy (AFM) measuring an average particle size of 457 nm. The initial microbial load was 4-log CFU/mL (yeast), 3-log CFU/mL (bacteria). No yeast and non-sporulating bacteria were detected in 1 mL and 10 mL of the UHPH-treated must, respectively. Furthermore, no fermentative activity was detected in the non-inoculated UHPH-treated musts for more than 50 days. A strong inactivation of the oxidative enzymes was observed, with lower oxidation (≈ × 3) than controls. The antioxidant activity of the UHPH-treated must was much higher (106%) than that of the control must. UHPH had a protective effect in total anthocyanins, and especially in acylated anthocyanins (+ 9.3%); furthermore, the fermentation produces fewer higher alcohol (-44,3%) and more 2-phenylethyl acetate (+ 63%).
Cabernet Sauvignon Red Must Processing by UHPH to Produce Wine Without SO2: the Colloidal Structure, Microbial and Oxidation Control, Colour Protection and Sensory Quality of the Wine
Tipo de Actividad
Artículos en revistasISSN
1935-5130Palabras Clave
.Ultra-high-pressure homogenisation (UHPH) sterilisation · Microbial control · Cabernet sauvignon · Wine colour · SO2 · Oxidation