• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A modified and extended genetic algorithm for optimal distributed generation grid-integration solutions in direct current power grids

Thumbnail
Ver/
IIT-24-348R (913.7Kb)
IIT-24-348R_preview (3.516Kb)
Fecha
2024-12-01
Autor
Galici, Marco
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
The integration of distributed generation into direct current power grids presents a critical challenge in modern energy systems, as it directly impacts grid reliability, efficiency, and the successful transition to renewable energy. This study addresses the problem of optimizing distributed generation placement and sizing in direct current grids, a key issue for reducing power losses and improving energy distribution. To tackle this, a modified and extended genetic algorithm was developed, capable of handling both continuous and discrete variables simultaneously. The algorithm was tested on two standard direct current grid systems, a 21-bus microgrid and a 69-bus network. The results demonstrated significant improvements over existing methods, reducing power losses by 84.5 in the 21-bus microgrid and by 95 in the 69-bus direct current network, with notably reduced computation times. These findings indicate that the proposed algorithm not only optimizes distributed generation integration effectively but also offers superior performance compared to traditional approaches, without the need for additional methods or software. The novelty of this work lies in its ability to handle complex, nonlinear optimization problems within direct current grids using a single, efficient approach, advancing beyond previous efforts by achieving better results with fewer computational resources.
 
URI
https:doi.org10.1016j.prime.2024.100857
http://hdl.handle.net/11531/97725
A modified and extended genetic algorithm for optimal distributed generation grid-integration solutions in direct current power grids
Tipo de Actividad
Artículos en revistas
ISSN
2772-6711
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Direct current grids; Genetic algorithms; Meta-heuristic optimization methods; Mixed-integer nonlinear programming
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias