• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing Integrated Information with a Prior Guided Random Search Algorithm

Thumbnail
Ver/
202512412214463_1109-3286-1-PB.pdf (387.3Kb)
Fecha
2024-12-01
Autor
Garrido Merchán, Eduardo César
Sánchez Cañizares, Javier
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
.
 
ntegrated information theory (IIT) is a theoretical framework that provides a quantitative measure to estimate when a physical system is conscious, its degree of consciousness, and the complexity of the qualia space that the system is experiencing. Formally, IIT rests on the assumption that if a surrogate physical system can fully embed the phenomenological properties of consciousness, then the system properties must be constrained by the properties of the qualia being experienced. Following this assumption, IIT represents the physical system as a network of interconnected elements that can be thought of as a probabilistic causal graph, G, where each node has an input-output function and all the graph is encoded in a transition probability matrix. Consequently, IIT’s quantitative measure of consciousness, Φ, is computed with respect to the transition probability matrix and the present state of the graph. In this paper, we provide a random search algorithm that is able to optimize Φ in order to investigate, as the number of nodes increases, the structure of the graphs that have higher Φ. We also provide arguments that show the difficulties of applying more complex black-box search algorithms, such as Bayesian optimization or metaheuristics, in this particular problem. Additionally, we suggest specific research lines for these techniques to enhance the search algorithm that guarantees maximal
 
URI
http://hdl.handle.net/11531/98159
Optimizing Integrated Information with a Prior Guided Random Search Algorithm
Tipo de Actividad
Artículos en revistas
ISSN
2153-8212
Materias/ categorías / ODS
Innovación docente y Analytics (GIIDA)
Palabras Clave
.
Consciousness Qualia Probabilistic causal graph Optimization
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias