Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/100516
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Coronado Vaca, María | es-ES |
dc.contributor.author | Vaquero Lafuente, Esther | es-ES |
dc.date.accessioned | 2025-07-10T14:17:37Z | - |
dc.date.available | 2025-07-10T14:17:37Z | - |
dc.date.issued | 2025-12-12 | es_ES |
dc.identifier.issn | 2331-1975 | es_ES |
dc.identifier.uri | https:doi.org10.108023311975.2025.2487219 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/100516 | - |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | This study explores the application of transformer models directly for classification in predicting mergers and acquisitions (M&A) targets within the U.S. energy sector. The primary objective is to evaluate the capability and performance of various transformer-based models in directly predicting M&A target companies, while the secondary objective investigates the relationship between target companies and renewable energy terminology in their annual reports. We present a novel approach to predicting M&A targets by utilizing cutting-edge Natural Language Processing (NLP) techniques, such as fine-tuned transformer LLMs (Large Language Models) for direct classification. We analyze textual data from 200 publicly-listed US energy companies’ SEC-filings and employ FinBERT, ALBERT, and GPT-3-babage-002 as predictive models of M&A targets. We provide empirical evidence on LLMs’ capability in the direct classification of M&A target companies, with FinBERT utilizing oversampling, being the top-performing model due to its high precision and minimized false positives, critical for precise financial decision-making. Additionally, while the study revealed key differences in target and non-target report characteristics, it finds no significant evidence that M&A target companies use more renewable energy-related terminology. It is the first paper applying fine-tuned transformer-LLMs to predict M&A targets, effectively showcasing their capability for this task of direct classification as predictive models. | en-GB |
dc.language.iso | en-GB | es_ES |
dc.source | Revista: Cogent Business & Management, Periodo: 1, Volumen: online, Número: 1, Página inicial: 2487219-1, Página final: 2487219-29 | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
dc.title | Fine-tuning transformer models for M&A target prediction in the U.S. ENERGY sector | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | Mergers and acquisitions (M&A); renewable energy; takeover target prediction; green M&A; natural language processing (NLP); transformer models; large language models (LLM) | en-GB |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-25-118R | 4,42 MB | Unknown | Visualizar/Abrir | |
IIT-25-118R_preview | 3,41 kB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.