Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/100535
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTejada Arango, Diego Alejandroes-ES
dc.contributor.authorKiviluoma, Juhaes-ES
dc.contributor.authorMorales España, German Andreses-ES
dc.date.accessioned2025-07-10T14:19:28Z-
dc.date.available2025-07-10T14:19:28Z-
dc.date.issued2025-07-01es_ES
dc.identifier.issn0142-0615es_ES
dc.identifier.urihttps:doi.org10.1016j.ijepes.2025.110674es_ES
dc.identifier.urihttp://hdl.handle.net/11531/100535-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractEnergy system models are essential for planning and supporting the energy transition. However, increasing temporal, spatial, and sectoral resolutions have led to large-scale linear programming (LP) models that are often (over)simplified to remain computationally tractable—frequently at the expense of model fidelity. This paper challenges the common belief that LP formulations cannot be improved without sacrificing their accuracy. Inspired by graph theory, we propose to model energy systems using energy assets (vertices), as a single building-block, and flows to connect between them. This reduces the need for additional components such as nodes and connections. The resulting formulation is more compact, without sacrificing accuracy, and leverages the inherent graph structure of energy systems. To evaluate performance, we implemented and compared four common modelling approaches varying in their use of building blocks and flow representations. We conducted experiments using TulipaEnergyModel.jl and applied them to a multi-sector case study with varying problem sizes. Results show that our single-building-block (1BB-1F) approach reduces variables and constraints by 26 and 35, respectively, and achieves a 1.27x average speedup in solving time without any loss in model fidelity. The speedup increases with problem size, making this approach particularly advantageous for large-scale models. Our findings demonstrate that not all LPs are equal in quality and that better reformulations can lead to substantial computational benefits. This paper also aims to raise awareness of model quality considerations in energy system optimisation and promote more efficient formulations without compromising fidelity.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: International Journal of Electrical Power & Energy Systems, Periodo: 1, Volumen: online, Número: , Página inicial: 110674-1, Página final: 110674-12es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleDebunking the speed-fidelity trade-off: Speeding-up large-scale energy models while keeping fidelityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsEnergy sector coupling; Optimisation modelling; Energy system models; Linear programming (LP); Computational efficiencyen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-115R2,6 MBUnknownVisualizar/Abrir
IIT-25-115R_preview3,8 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.