Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/100564
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Rodríguez Cuenca, Francisco | es-ES |
dc.contributor.author | Sánchez Ubeda, Eugenio Francisco | es-ES |
dc.contributor.author | Portela González, José | es-ES |
dc.contributor.author | Muñoz San Roque, Antonio | es-ES |
dc.contributor.author | Guizien Martin, Victor | es-ES |
dc.contributor.author | Andrea, Veiga Santiago | es-ES |
dc.contributor.author | Mateo González, Alicia | es-ES |
dc.date.accessioned | 2025-07-10T14:22:39Z | - |
dc.date.available | 2025-07-10T14:22:39Z | - |
dc.date.issued | 2025-05-01 | es_ES |
dc.identifier.issn | 0360-5442 | es_ES |
dc.identifier.uri | https:doi.org10.1016j.energy.2025.135410 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/100564 | - |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | This paper presents a general and interpretable methodology for delivering personalized energy-saving recommendations to household televisions. TVs, though often overlooked, account for 7 of household energy consumption, ranking as the fourth most costly category. The methodology extracts five easy-to-understand scalar features from historical TV energy consumption data, each representing a key usage aspect: OFF consumption, ON consumption, Daily Consumption, Session Duration, and Schedule of Consumption. It then employs a probabilistic approach based on the Wasserstein Distance to compare these features across TVs. Based on this comparison, two methods—percentage and elbow— are introduced for identifying TVs with significant deviations by feature, accompanied by tailored recommendations. The methodology is applied to case studies in Spain (RC4ALL project) and the UK (REFIT dataset), with results compared. The percentage method flags 60 of TVs (15 in RC4ALL, 12 in REFIT), while the elbow method flags 56 (14 TVs) in RC4ALL and 40 (8 TVs) in REFIT. Selected TVs in RC4ALL show greater deviations, with ON power 2.5 times and OFF power 16 times above normal, compared to 2 and 7 times in REFIT. TVs’ extended daily usage and long sessions raise health concerns. This methodology can also be applied to devices beyond TVs. | en-GB |
dc.language.iso | en-GB | es_ES |
dc.source | Revista: Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 135410-1, Página final: 135410-13 | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
dc.title | Television usage recommendations for energy efficiency: A Probabilistic methodology based on the Wasserstein distance | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | Recommender system; Energy saving; Occupant behavior; Household appliances; Wasserstein distance; Data-driven | en-GB |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-25-054R_preprint | 2,24 MB | Unknown | Visualizar/Abrir | |
IIT-25-054R_preview | 3,66 kB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.