Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/100591
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez López, Álvaro Jesúses-ES
dc.contributor.authorPortela González, Josées-ES
dc.date.accessioned2025-07-10T14:25:38Z-
dc.date.available2025-07-10T14:25:38Z-
dc.date.issued2025-01-01es_ES
dc.identifier.issn0924-669Xes_ES
dc.identifier.urihttps:doi.org10.1007s10489-024-05901-4es_ES
dc.identifier.urihttp://hdl.handle.net/11531/100591-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractTransformer-based language models, including ChatGPT, have demonstrated exceptional performance in various natural language generation tasks. However, there has been limited research evaluating ChatGPT’s keyphrase generation ability, which involves identifying informative phrases that accurately reflect a document’s content. This study seeks to address this gap by comparing ChatGPT’s keyphrase generation performance with state-of-the-art models, while also testing its potential as a solution for two significant challenges in the field: domain adaptation and keyphrase generation from long documents. We conducted experiments on eight publicly available datasets spanning scientific, news, and biomedical domains, analyzing performance across both short and long documents. Our results show that ChatGPT outperforms current state-of-the-art models in all tested datasets and environments, generating high-quality keyphrases that adapt well to diverse domains and document lengths.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Applied Intelligence, Periodo: 1, Volumen: online, Número: 1, Página inicial: 50-1, Página final: 50-25es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleChatGPT vs state-of-the-art models: a benchmarking study in keyphrase generation taskes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsChatGPT · Text generation · Keyphrase generation · Natural language processing · Deep learning · Domain adaptation · Long documents · Large language modelsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-25-004R_preview2,91 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.