Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/100591
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | López López, Álvaro Jesús | es-ES |
dc.contributor.author | Portela González, José | es-ES |
dc.date.accessioned | 2025-07-10T14:25:38Z | - |
dc.date.available | 2025-07-10T14:25:38Z | - |
dc.date.issued | 2025-01-01 | es_ES |
dc.identifier.issn | 0924-669X | es_ES |
dc.identifier.uri | https:doi.org10.1007s10489-024-05901-4 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/100591 | - |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | Transformer-based language models, including ChatGPT, have demonstrated exceptional performance in various natural language generation tasks. However, there has been limited research evaluating ChatGPT’s keyphrase generation ability, which involves identifying informative phrases that accurately reflect a document’s content. This study seeks to address this gap by comparing ChatGPT’s keyphrase generation performance with state-of-the-art models, while also testing its potential as a solution for two significant challenges in the field: domain adaptation and keyphrase generation from long documents. We conducted experiments on eight publicly available datasets spanning scientific, news, and biomedical domains, analyzing performance across both short and long documents. Our results show that ChatGPT outperforms current state-of-the-art models in all tested datasets and environments, generating high-quality keyphrases that adapt well to diverse domains and document lengths. | en-GB |
dc.format.mimetype | application/octet-stream | es_ES |
dc.language.iso | en-GB | es_ES |
dc.source | Revista: Applied Intelligence, Periodo: 1, Volumen: online, Número: 1, Página inicial: 50-1, Página final: 50-25 | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
dc.title | ChatGPT vs state-of-the-art models: a benchmarking study in keyphrase generation task | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | ChatGPT · Text generation · Keyphrase generation · Natural language processing · Deep learning · Domain adaptation · Long documents · Large language models | en-GB |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
IIT-25-004R_preview | 2,91 kB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.