Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/100622
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorZuluaga Ríos, Carlos Davides-ES
dc.date.accessioned2025-07-10T14:29:06Z-
dc.date.available2025-07-10T14:29:06Z-
dc.date.issued2024-12-01es_ES
dc.identifier.issn2772-6711es_ES
dc.identifier.urihttps:doi.org10.1016j.prime.2024.100857es_ES
dc.identifier.urihttp://hdl.handle.net/11531/100622-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThe integration of distributed generation into direct current power grids presents a critical challenge in modern energy systems, as it directly impacts grid reliability, efficiency, and the successful transition to renewable energy. This study addresses the problem of optimizing distributed generation placement and sizing in direct current grids, a key issue for reducing power losses and improving energy distribution. To tackle this, a modified and extended genetic algorithm was developed, capable of handling both continuous and discrete variables simultaneously. The algorithm was tested on two standard direct current grid systems, a 21-bus microgrid and a 69-bus network. The results demonstrated significant improvements over existing methods, reducing power losses by 84.5 in the 21-bus microgrid and by 95 in the 69-bus direct current network, with notably reduced computation times. These findings indicate that the proposed algorithm not only optimizes distributed generation integration effectively but also offers superior performance compared to traditional approaches, without the need for additional methods or software. The novelty of this work lies in its ability to handle complex, nonlinear optimization problems within direct current grids using a single, efficient approach, advancing beyond previous efforts by achieving better results with fewer computational resources.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: e-Prime - Advances in Electrical Engineering, Electronics and Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 100857-1, Página final: 100857-6es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleA modified and extended genetic algorithm for optimal distributed generation grid-integration solutions in direct current power gridses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsDirect current grids; Genetic algorithms; Meta-heuristic optimization methods; Mixed-integer nonlinear programmingen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-24-348R913,78 kBUnknownVisualizar/Abrir
IIT-24-348R_preview3,52 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.