Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/101079
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGarrido Merchán, Eduardo Césares-ES
dc.date.accessioned2025-07-15T11:08:06Z-
dc.date.available2025-07-15T11:08:06Z-
dc.date.issued2025-12-31es_ES
dc.identifier.issn3029-2786es_ES
dc.identifier.urihttps:doi.org10.59400cai2923es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThis research focuses on comparing standard Bayesian optimization and multifidelity Bayesian optimization in the hyperparameter search to improve the performance of reinforcement learning algorithms in environments such as OpenAI LunarLander and CartPole. The primary goal is to determine whether multifidelity Bayesian optimization provides significant improvements in solution quality compared to standard Bayesian optimization. To address this question, several Python implementations were developed, evaluating the solution quality using the mean of the total rewards obtained as the objective function. Various experiments were conducted for each environment and version using different seeds, ensuring that the results were not merely due to the inherent randomness of reinforcement learning algorithms. The results demonstrate that multifidelity Bayesian optimization outperforms standard Bayesian optimization in several key aspects. In the LunarLander environment, multifidelity optimization achieved better convergence and more stable performance, yielding a higher average reward compared to the standard version. In the CartPole environment, although both methods quickly reached the maximum reward, multifidelity did so with greater consistency and in less time. These findings highlight the ability of multifidelity optimization to optimize hyperparameters more efficiently, using fewer resources and less time while achieving superior performance.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Computing and Artificial Intelligence, Periodo: 1, Volumen: online, Número: 2, Página inicial: 2923-1, Página final: 2923-13es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleMultifidelity Bayesian optimization for hyperparameter tuning of deep reinforcement learning algorithmses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsdeep reinforcement learning; bayesian optimization; meta learningen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-153R409,22 kBUnknownVisualizar/Abrir
IIT-25-153R_preview3,32 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.