Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/101247
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCifuentes Quintero, Jenny Alexandraes-ES
dc.contributor.authorPham, Minh Tues-ES
dc.date.accessioned2025-07-16T12:20:14Z-
dc.date.available2025-07-16T12:20:14Z-
dc.date.issued2025-10-01es_ES
dc.identifier.issn0957-4158es_ES
dc.identifier.urihttps:doi.org10.1016j.mechatronics.2025.103359es_ES
dc.identifier.urihttp://hdl.handle.net/11531/101247-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractPneumatic Artificial Muscles (PAMs) are highly nonlinear actuators widely used in robotics, rehabilitation, and other dynamic applications. Their complex behavior poses significant challenges for traditional system identification methods. Although machine learning techniques have shown remarkable success in modeling nonlinear systems, their black-box nature often leads to interpretability issues and susceptibility to overfitting. This study proposes a novel hybrid modeling approach that combines the strengths of analytical models with neural networks to capture the inverse thermodynamic behavior of PAMs. The results demonstrate that the hybrid model outperformed both analytical and purely neural network models. The obtained models were further used for model-based control design and the results show that the application of hybrid model improved the tracking performance.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Mechatronics, Periodo: 1, Volumen: online, Número: , Página inicial: 103359-1, Página final: 103359-6es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleLearning an inverse thermodynamic model for Pneumatic Artificial Muscles controles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsNeural networks; Hybrid modeling; Pneumatic Artificial Muscles; Model-based controlen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-204R993,71 kBUnknownVisualizar/Abrir
IIT-25-204R_preview2,79 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.