Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/101258
Título : Metric tools for sensitivity analysis with applications to neural networks
Autor : Pizarroso Gonzalo, Jaime
Alfaya Sánchez, David
Portela González, José
Muñoz San Roque, Antonio
Fecha de publicación : 1-ago-2025
Resumen : 
As Machine Learning models are considered for autonomous decisions with significant social impact, the need to understand how these models work rises rapidly. Explainable Artificial Intelligence (XAI) aims to provide interpretations for predictions made by Machine Learning models, in order to make the model trustworthy and more transparent for the user. For example, selecting relevant input variables for the problem directly impacts the model’s ability to learn and make accurate predictions. One of the main XAI techniques to obtain input variable importance is the sensitivity analysis based on partial derivatives. However, existing literature of this method provides no justification of the aggregation metrics used to retrieved information from the partial derivatives. In this paper, a theoretical framework is proposed to study sensitivities of ML models using metric techniques. From this metric interpretation, a complete family of new quantitative metrics called α-curves is extracted. These α-curves provide information with greater depth on the importance of the input variables for a machine learning model than existing XAI methods in the literature. We demonstrate the effectiveness of the α-curves using synthetic and real datasets, comparing the results against other XAI methods for variable importance and validating the analysis results with the ground truth or literature information.
Descripción : Artículos en revistas
URI : https:doi.org10.1016j.asoc.2025.113300
http://hdl.handle.net/11531/101258
ISSN : 1568-4946
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-25-171R_preview3,43 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.