Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/101265
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGüitta López, Lucíaes-ES
dc.contributor.authorBoal Martín-Larrauri, Jaimees-ES
dc.contributor.authorLópez López, Álvaro Jesúses-ES
dc.date.accessioned2025-07-16T12:21:51Z-
dc.date.available2025-07-16T12:21:51Z-
dc.date.issued2025-07-01es_ES
dc.identifier.issn2218-6581es_ES
dc.identifier.urihttps:doi.org10.3390robotics14070086es_ES
dc.identifier.urihttp://hdl.handle.net/11531/101265-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractDeep Reinforcement Learning (DRL) is a powerful framework for solving complex sequential decision-making problems, particularly in robotic control. However, its practical deployment is often hindered by the substantial amount of experience required for learning, which results in high computational and time costs. In this work, we propose a novel integration of DRL with semantic knowledge in the form of Knowledge Graph Embeddings (KGEs), aiming to enhance learning efficiency by providing contextual information to the agent. Our architecture combines KGEs with visual observations, enabling the agent to exploit environmental knowledge during training. Experimental validation with robotic manipulators in environments featuring both fixed and randomized target attributes demonstrates that our method achieves up to 60 reduction in learning time and improves task accuracy by approximately 15 percentage points, without increasing training time or computational complexity. These results highlight the potential of semantic knowledge to reduce sample complexity and improve the effectiveness of DRL in robotic applications.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Robotics, Periodo: 1, Volumen: online, Número: 7, Página inicial: 86-1, Página final: 86-18es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleBoosting Deep Reinforcement Learning with Semantic Knowledge for Robotic Manipulatorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsdeep reinforcement learning; semantic knowledge; robotics; sample efficiencyen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-208R14,78 MBUnknownVisualizar/Abrir
IIT-25-208R_preview2,98 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.