Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/101268
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSánchez Pérez, Pabloes-ES
dc.contributor.authorBellogín, Alejandroes-ES
dc.date.accessioned2025-07-16T12:22:14Z-
dc.date.available2025-07-16T12:22:14Z-
dc.date.issued2025-06-10es_ES
dc.identifier.issn2157-6904es_ES
dc.identifier.urihttps:doi.org10.11453744347es_ES
dc.identifier.urihttp://hdl.handle.net/11531/101268-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractData sparsity is a persistent challenge in recommender systems, specially in specific domains like Point-of-Interest (POI) recommendation, where it significantly impacts model performance. While classical recommender systems have used various imputation and data augmentation mechanisms to address data sparsity, these methods have not been extensively explored in the POI recommendation domain. In this work, we propose a generic imputation framework to study the use of data augmentation techniques to generate synthetic check-ins and analyze their effects on the POI recommendation scenario. Our main goal is to enhance the performance of various traditional recommenders by increasing the training set interactions, considering specific characteristics of the domain, such as geographical information. We apply these techniques in six different cities from a global Foursquare check-in dataset, as well as in two additional cities from the Gowalla dataset, and a separate dataset from Yelp, ensuring a comprehensive evaluation across multiple data sources. Our imputation approach evidences improvements for most models. In several cases, these improvements exceeded 100 for ranking accuracy, measured in terms of nDCG, without considerably compromising novelty or diversity. Data and code is released at https:github.compablosanchezpImputationForPOIRecsys.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: ACM Transactions on Intelligent Systems and Technology, Periodo: 1, Volumen: En imprenta, Número: , Página inicial: 0, Página final: 0es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleSmart imputation, better recommendations: improving traditional Point-of-Interest recommendation through data augmentationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsInformation systems → Recommender systems; Information extraction; Point-Of-Interest, Imputation, Temporal evaluationen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-187R_preprint3,8 MBUnknownVisualizar/Abrir
IIT-25-187R_preview3,05 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.