Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/102063
Título : Simulated fire observables as indicators for optimizing wireless sensor networks in wildfire risk monitoring
Autor : Gómez González, Juan Luis
Marcoulaki, Effie
Cantizano González, Alexis
Konstantinidou, Myrto
Caro Carretero, Raquel
Castro Ponce, Mario
Fecha de publicación : 1-jun-2025
Resumen : 
Uncontrolled wildfires cause significant damage and economic costs. Wireless Sensor Networks (WSNs) can mitigate these impacts by detecting fires early across extensive wildland areas. This work presents a simulation-driven optimization framework for localizing WSNs to enhance early wildfire detection and minimize potential damage. Formulated as a Multi-Objective Optimization Problem (MOOP) and solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), the method utilizes dynamic wildfire simulations and considers stochastic variables such as ignition likelihood and weather conditions. The methodology is general and independent of the simulation model or the studied region. The framework supports decision-making under uncertainty, ensuring the designed networks remain effective across varying conditions. A practical case study with validated fire behaviour demonstrates the robustness of the approach to identify the most efficient and cost-effective sensor locations. Results show significantly better performance compared to uniform sensor grids and WSNs designed for fixed-weather scenarios, highlighting the benefits of this approach for wildfire management.
Descripción : Artículos en revistas
URI : https:doi.org10.1016j.ecolind.2025.113509
http://hdl.handle.net/11531/102063
ISSN : 1470-160X
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-144R3,39 MBUnknownVisualizar/Abrir
IIT-25-144R_preview3,13 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.