Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/102183
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTordesillas Torres, Jesúses-ES
dc.date.accessioned2025-07-24T08:51:54Z-
dc.date.available2025-07-24T08:51:54Z-
dc.identifier.urihttp://hdl.handle.net/11531/102183-
dc.description.abstractes-ES
dc.description.abstractDifferentiable simulators provide analytic gradients, enabling more sample-efficient learning algorithms and paving the way for data intensive learning tasks such as learning from images. In this work, we demonstrate that locomotion policies trained with analytic gradients from a differentiable simulator can be successfully transferred to the real world.Typically, simulators that offer informative gradients lack the physical accuracy needed for sim-to-real transfer, and viceversa. A key factor in our success is a smooth contact model that combines informative gradients with physical accuracy, ensuring effective transfer of learned behaviors. To the best of our knowledge, this is the first time a real quadrupedal robot is able to locomote after training exclusively in a differentiable simulation.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.titleDiffSim2Real: Deploying Quadrupedal Locomotion Policies Purely Trained in Differentiable Simulationes_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-369C4,45 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.