Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/102183
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Tordesillas Torres, Jesús | es-ES |
dc.date.accessioned | 2025-07-24T08:51:54Z | - |
dc.date.available | 2025-07-24T08:51:54Z | - |
dc.identifier.uri | http://hdl.handle.net/11531/102183 | - |
dc.description.abstract | es-ES | |
dc.description.abstract | Differentiable simulators provide analytic gradients, enabling more sample-efficient learning algorithms and paving the way for data intensive learning tasks such as learning from images. In this work, we demonstrate that locomotion policies trained with analytic gradients from a differentiable simulator can be successfully transferred to the real world.Typically, simulators that offer informative gradients lack the physical accuracy needed for sim-to-real transfer, and viceversa. A key factor in our success is a smooth contact model that combines informative gradients with physical accuracy, ensuring effective transfer of learned behaviors. To the best of our knowledge, this is the first time a real quadrupedal robot is able to locomote after training exclusively in a differentiable simulation. | en-GB |
dc.format.mimetype | application/octet-stream | es_ES |
dc.language.iso | en-GB | es_ES |
dc.title | DiffSim2Real: Deploying Quadrupedal Locomotion Policies Purely Trained in Differentiable Simulation | es_ES |
dc.type | info:eu-repo/semantics/workingPaper | es_ES |
dc.description.version | info:eu-repo/semantics/draft | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | en-GB | |
Aparece en las colecciones: | Documentos de Trabajo |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
IIT-24-369C | 4,45 MB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.