Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/102183
Título : | DiffSim2Real: Deploying Quadrupedal Locomotion Policies Purely Trained in Differentiable Simulation |
Autor : | Tordesillas Torres, Jesús |
Resumen : | Differentiable simulators provide analytic gradients, enabling more sample-efficient learning algorithms and paving the way for data intensive learning tasks such as learning from images. In this work, we demonstrate that locomotion policies trained with analytic gradients from a differentiable simulator can be successfully transferred to the real world.Typically, simulators that offer informative gradients lack the physical accuracy needed for sim-to-real transfer, and viceversa. A key factor in our success is a smooth contact model that combines informative gradients with physical accuracy, ensuring effective transfer of learned behaviors. To the best of our knowledge, this is the first time a real quadrupedal robot is able to locomote after training exclusively in a differentiable simulation. |
URI : | http://hdl.handle.net/11531/102183 |
Aparece en las colecciones: | Documentos de Trabajo |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
IIT-24-369C | 4,45 MB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.