Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/103105
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFernández Rodríguez, Adriánes-ES
dc.contributor.authorDomínguez Gago, Maríaes-ES
dc.contributor.authorCucala García, María Asunciónes-ES
dc.contributor.authorFernández Cardador, Antonioes-ES
dc.date.accessioned2025-09-01T07:07:51Z-
dc.date.available2025-09-01T07:07:51Z-
dc.date.issued2025-12-31es_ES
dc.identifier.issn2169-3536es_ES
dc.identifier.urihttps:doi.org10.1109ACCESS.2025.3589009es_ES
dc.identifier.urihttp://hdl.handle.net/11531/103105-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractUrban railways play a critical role in promoting sustainable transportation by providing high-capacity, efficient, and low-emission alternatives to road-based travel. As cities continue to grow, the demand for mass transit rail transport is steadily increasing, posing significant challenges to existing infrastructure, particularly at terminal stations, which often become bottlenecks due to their complex operations. Addressing these capacity limitations is essential not only for improving the quality of service but also for supporting the broader goals of urban sustainability. This paper introduces a two-level optimization model designed to maximize the practical transport capacity of mass transit railway stations. At the upper level, a genetic algorithm determines the optimal sequence of train services and platform assignments. These solutions are then evaluated by a linear programming model at the lower level to estimate the resulting transport capacity. For a more realistic assessment of practical capacity, fuzzy modelling is employed to manage uncertainties in train delays and operational variations. The model incorporates critical operational constraints of urban railways, including minimum turn-around times, track occupancy, and constant headways between train services of the same type. A detailed simulation model is used to evaluate route intervals based on train dynamics and signalling systems. Simulation results based on real-world data demonstrate the model’s effectiveness in maximizing capacity under uncertain conditions and different operational schemes, contributing to more efficient and sustainable mass transit railway systems. This research highlights the importance of optimizing rail transport capacity as a key component of sustainable urban development.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: IEEE Access, Periodo: 1, Volumen: online, Número: , Página inicial: 126227, Página final: 126244es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleTransport Capacity Maximization in Rail Mass Transit Stations Under Uncertaintyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsMass transit railway, transport capacity, fuzzy logic, genetic algorithm, bi-level optimization.en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-264R4,89 MBUnknownVisualizar/Abrir
IIT-25-264R_preview3,73 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.