Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/103114
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPalacios Hielscher, Rafaeles-ES
dc.contributor.authorGupta, Amares-ES
dc.date.accessioned2025-09-01T07:09:06Z-
dc.date.available2025-09-01T07:09:06Z-
dc.date.issued2025-08-01es_ES
dc.identifier.issn2076-3417es_ES
dc.identifier.urihttps:doi.org10.3390app15158282es_ES
dc.identifier.urihttp://hdl.handle.net/11531/103114-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractCustomer churn prediction has become crucial for businesses, yet it poses significant challenges regarding privacy preservation and prediction accuracy. In this paper, we address two fundamental questions: (1) How can customer churn be effectively predicted while ensuring robust privacy protection of sensitive data? (2) How can large language models enhance churn prediction accuracy while maintaining data privacy? To address these questions, we propose FairRAG, a robust architecture that combines differential privacy, retrieval-augmented generation, and LLMs. Our approach leverages OPT-125M as the core language model along with a sentence transformer for semantic similarity matching while incorporating differential privacy mechanisms to generate synthetic training data. We evaluate FairRAG on two diverse datasets: Bank Churn and Telco Churn. The results demonstrate significant improvements over both traditional machine learning approaches and standalone LLMs, achieving accuracy improvements of up to 11 on the Bank Churn dataset and 12 on the Telco Churn dataset. These improvements were maintained when using differentially private synthetic data, thus indicating robust privacy and accuracy trade-offs.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Applied Sciences, Periodo: 1, Volumen: online, Número: 15, Página inicial: 8282-1, Página final: 8282-18es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleFairRAG: A Privacy-Preserving Framework for Fair Financial Decision-Makinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsalgorithmic fairness; privacy-preserving machine learning; differential privacy; retrieval-augmented generationen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-247R1,36 MBUnknownVisualizar/Abrir
IIT-25-247R_preview3 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.