Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/104113
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPalacios Hielscher, Rafaeles-ES
dc.contributor.authorGupta, Amares-ES
dc.date.accessioned2025-09-15T13:10:40Z-
dc.date.available2025-09-15T13:10:40Z-
dc.date.issued2025-09-01es_ES
dc.identifier.issn2504-4990es_ES
dc.identifier.urihttps:doi.org10.3390make7030077es_ES
dc.identifier.urihttp://hdl.handle.net/11531/104113-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractGenerative Adversarial Networks (GANs) using Long Short-Term Memory (LSTM) provide a computationally cheaper approach for text generation compared to large language models (LLMs). The low hardware barrier of training GANs poses a threat because it means more bad actors may use them to mass-produce prompt attack messages against LLM systems. Thus, to better understand the threat of GANs being used for prompt attack generation, we train two well-known GAN architectures, SeqGAN and RelGAN, on prompt attack messages. For each architecture, we evaluate generated prompt attack messages, comparing results with each other, with generated attacks from another computationally cheap approach, a 1-billion-parameter Llama 3.2 small language model (SLM), and with messages from the original dataset. This evaluation suggests that GAN architectures like SeqGAN and RelGAN have the potential to be used in conjunction with SLMs to readily generate malicious prompts that impose new threats against LLM-based systems such as chatbots. Analyzing the effectiveness of state-of-the-art defenses against prompt attacks, we also find that GAN-generated attacks can deceive most of these defenses with varying levels of success with the exception of Meta’s PromptGuard. Further, we suggest an improvement of prompt attack defenses based on the analysis of the language quality of the prompts, which we found to be the weakest point of GAN-generated messages.    en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Machine Learning and Knowledge Extraction, Periodo: 1, Volumen: online, Número: 3, Página inicial: 77-1, Página final: 77-24es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleEvaluating Prompt Injection Attacks with LSTM-Based Generative Adversarial Networks: A Lightweight Alternative to Large Language Modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsAI Cybersecurity; adversarial prompts; large language models; Generative Adversarial Networken-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-259R1,99 MBUnknownVisualizar/Abrir
IIT-25-259R_preview3,68 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.