Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/104553
Título : Discrete Dirac reduction of implicit Lagrangian systems with abelian symmetry groups
Autor : Rodríguez Abella, Álvaro
Leok, Melvin
Fecha de publicación : 22-feb-2023
Resumen : .
This paper develops the theory of discrete Dirac reduction of discrete Lagrange–Dirac systems with an abelian symmetry group acting on the configuration space. We begin with the linear theory and, then, we extend it to the nonlinear setting using retraction compatible charts. We consider the reduction of both the discrete Dirac structure and the discrete Lagrange–Pontryagin principle, and show that they both lead to the same discrete Lagrange–Poincaré–Dirac equations. The coordinatization of the discrete reduced spaces relies on the notion of discrete connections on principal bundles. At last, we demonstrate the method obtained by applying it to a charged particle in a magnetic field, and to the double spherical pendulum.
Descripción : Artículos en revistas
URI : https://doi.org/10.3934/jgm.2023013
ISSN : 1941-4889
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
10.3934_jgm.2023013.pdf821,27 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.