Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/104825
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGómez Pérez, Jesús Davides-ES
dc.contributor.authorLatorre Canteli, Jesús Maríaes-ES
dc.contributor.authorRamos Galán, Andréses-ES
dc.contributor.authorPerea Sánchez, Alejandroes-ES
dc.contributor.authorSanz González, Pabloes-ES
dc.contributor.authorHernández González, Franciscoes-ES
dc.date.accessioned2025-09-26T12:30:22Z-
dc.date.available2025-09-26T12:30:22Z-
dc.date.issued2024-04-01es_ES
dc.identifier.issn0306-2619es_ES
dc.identifier.urihttps:doi.org10.1016j.apenergy.2024.122688es_ES
dc.identifier.urihttp://hdl.handle.net/11531/104825-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractIn decision-making under uncertainty, a robust representation of uncertainty is vital for optimal operational and strategic solutions. We extend existing methods by utilizing Fourier decomposition to create multivariate synthetic time series, capturing stochastic seasonal patterns while preserving correlations. These synthetic time series are transformed into a recombining scenario tree via K-means clustering. To enhance the resulting policy in the Stochastic Dual Dynamic Programming (SDDP) framework, we propose an additional sampling within scenario-tree nodes to consider a better representation of the cost-to-go function. A convergence proof for this sampling technique is provided. Moreover, two new stopping criteria are introduced for better solution accuracy and robustness. The first criterion extends traditional stopping rules to all scenario-tree nodes. The second criterion enforces a minimum count of Benders cuts per node, promoting accurate and robust solutions. Our approach is evaluated on the Spanish hydrothermal system, incorporating synthetic time series with seasonal-trend uncertainty in optimization and simulation. Policies from traditional SDDP and our technique were tested over a thousand realizations, demonstrating that our proposals yield reservoir operation policies closer to the thresholds set by the operator compared to traditional SDDP. Computational efficiency is maintained. The proposed sampling mitigates the impact of discretizing stochastic variables into scenario trees by evaluating more scenarios per node. Our framework offers robust policies under uncertainty through stochastic seasonal patterns by Fourier analysis, novel SDDP sampling, and additional stopping criteria.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Applied Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 122688-1, Página final: 122688-18es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleImproving operating policies in stochastic optimization: an application to the medium-term hydrothermal scheduling problemes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsTime series; Fourier analysis; Optimization methods; Stochastic programming; SDDP; Sampling methodsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-24-030R_preprint3,06 MBUnknownVisualizar/Abrir
IIT-24-030R_preview3,29 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.