Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/104840
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPérez Sánchez, Jaimees-ES
dc.contributor.authorCastro Ponce, Marioes-ES
dc.contributor.authorAwad, Edmondes-ES
dc.contributor.authorLópez López, Gregorioes-ES
dc.date.accessioned2025-09-26T12:32:12Z-
dc.date.available2025-09-26T12:32:12Z-
dc.date.issued2024-02-28es_ES
dc.identifier.issn0950-7051es_ES
dc.identifier.urihttps:doi.org10.1016j.knosys.2024.111440es_ES
dc.identifier.urihttp://hdl.handle.net/11531/104840-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractSynthetic data generation has been a growing area of research in recent years. However, its potential applications in serious games have yet to be thoroughly explored. Advances in this field could anticipate data modeling and analysis, as well as speed up the development process. To fill this gap in the literature, we propose a simulator architecture for generating probabilistic synthetic data for decision-based serious games. This architecture is designed to be versatile and modular so that it can be used by other researchers on similar problems (e.g., multiple choice exams, political surveys, any type of questionnaire). To simulate the interaction of synthetic players with the game, we use a cognitive testing model based on the Item Response Theory framework. We also show how probabilistic graphical models (in particular, Bayesian networks) can introduce expert knowledge and external data into the simulation. Finally, we apply the proposed architecture and methods in the case of a serious game focused on cyberbullying. We perform Bayesian inference experiments using a hierarchical model to demonstrate the identifiability and robustness of the generated data.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Knowledge-Based Systems, Periodo: 1, Volumen: online, Número: , Página inicial: 111440-1, Página final: 111440-10es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleGeneration of probabilistic synthetic data for serious games: a case study on cyberbullyinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsSynthetic data; Serious games; Cyberbullying; Item response theory; Bayesian network; Hierarchical Bayesian model; Computational social scienceen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-24-037R1,54 MBUnknownVisualizar/Abrir
IIT-24-037R_preview2,94 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.