Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/104867
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMansouri, Seyedamires-ES
dc.contributor.authorParedes Parrilla, Ángeles-ES
dc.contributor.authorGonzález González, José Manueles-ES
dc.contributor.authorAguado Sánchez, José Antonioes-ES
dc.date.accessioned2025-09-26T15:27:09Z-
dc.date.available2025-09-26T15:27:09Z-
dc.date.issued2023-10-01es_ES
dc.identifier.issn0306-2619es_ES
dc.identifier.urihttps:doi.org10.1016j.apenergy.2023.121440es_ES
dc.identifier.urihttp://hdl.handle.net/11531/104867-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThe proliferation of the number of Smart Buildings (SBs) and the fleet of Electric Vehicles (EVs) in Distribution Systems (DSs) makes the need for new strategies to coordinate them with microgrid (MG) scheduling inevitable. Therefore, this article proposes a three-layer risk-averse game theoretic-based strategy to coordinate SBs and EV fleets with MGs scheduling. In the first layer of this strategy, a Demand Response Program (DRP) is designed for SBs where dynamic incentive tariffs are calculated based on the consumption pattern of subscribers. Then, in the second layer, the scheduling of SBs and EV fleets is done in a decentralized space and considering their participation in the designed DRP. Eventually, in the third layer, the operators of MGs have received the power exchange information of SBs in order to carry out their scheduling in accordance with it. In this layer, the Day-Ahead (DA) scheduling of MGs and DS is done through the implementation of a cooperative game theory. Fluctuations of uncertain operational parameters such as load demand, radiation and wind are embedded in the model by scenario-based technique where a Risk-Averse (RA) strategy is adopted to manage them. Running the proposed three-layer strategy on a 69-node DS containing four MGs showed that this strategy can use the potential of SBs and EV fleets to improve the voltage characteristics in the high-demand period and reduce total daily costs by 13.66 with designing a dynamic-tariff DRP. Moreover, the results reveal that MGs using the Peer-to-Peer (P2P) power exchange option have not only reduced the power losses in the system but also reduced the total daily costs by about 8.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Applied Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 121440-1, Página final: 121440-20es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleA three-layer game theoretic-based strategy for optimal scheduling of microgrids by leveraging a dynamic demand response program designer to unlock the potential of smart buildings and electric vehicle fleetses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsMicrogrids; Cooperative game theory; Smart buildings; Vehicle-to-grid services; Demand response programs; Temperature Comforten-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-23-151R16,56 MBUnknownVisualizar/Abrir
IIT-23-151R_preview3,79 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.