Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/105601
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBaños Ramos, Andreaes-ES
dc.contributor.authorReneses Botija, Maríaes-ES
dc.contributor.authorPérez Sánchez, Jaimees-ES
dc.contributor.authorAwad, Edmondes-ES
dc.contributor.authorLópez López, Gregorioes-ES
dc.contributor.authorCastro Ponce, Marioes-ES
dc.date.accessioned2025-09-30T06:38:32Z-
dc.date.available2025-09-30T06:38:32Z-
dc.date.issued2025-12-31es_ES
dc.identifier.issn2045-2322es_ES
dc.identifier.urihttps:doi.org10.1038s41598-025-16149-4es_ES
dc.identifier.urihttp://hdl.handle.net/11531/105601-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractCyberbullying (CB) has emerged as a growing concern among adolescents, with nearly 10 of European children affected monthly and almost half experiencing it at least once. Unlike traditional bullying, CB thrives in digital environments where anonymity and impunity are prevalent. Despite its increasing prevalence, understanding the causal mechanisms behind CB remains challenging due to the limitations of conventional statistical methods, which often rely on correlations and are prone to spurious associations. In this paper, we introduce a novel human–machine consensus framework for causal discovery, aimed at supporting social scientists in unraveling the complex dynamics of CB. We leverage recent advances in data-driven causal inference, particularly the use of Directed Acyclic Graphs (DAGs), to identify and interpret causal relationships from observational data. Our approach integrates automatic causal discovery algorithms with expert knowledge, addressing the limitations of both purely algorithmic and purely expert-driven methods, and allows for the creation of a model ensemble estimation of the causal effects. To enhance interpretability and usability, we advocate for the use of Probabilistic Graphical Causal Models (PGCMs), or Bayesian Networks, which combine probabilistic reasoning with graphical representation. This hybrid methodology not only mitigates cognitive biases and inconsistencies in expert input but also fosters transparency and critical reflection in model construction. Cyberbullying serves as a compelling case study where ethical constraints preclude experimental designs, highlighting the value of interpretable, expert-informed causal models for guiding policy and intervention strategies.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Scientific Reports, Periodo: 1, Volumen: online, Número: , Página inicial: 32954-1, Página final: 32954-17es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleEnhancing social science research on cyberbullying through human machine collaborationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsSerious games, cyberbullying, causality, computational social science, DAG, do-calculusen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-304R2,68 MBUnknownVisualizar/Abrir
IIT-25-304R_preview3,83 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.