Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/105794
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cifuentes Quintero, Jenny Alexandra | es-ES |
dc.contributor.author | Marulanda García, Geovanny Alberto | es-ES |
dc.date.accessioned | 2025-10-01T12:55:43Z | - |
dc.date.available | 2025-10-01T12:55:43Z | - |
dc.date.issued | 2025-10-01 | es_ES |
dc.identifier.issn | 2071-1050 | es_ES |
dc.identifier.uri | https:doi.org10.3390su17198655 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/105794 | - |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | The increasing penetration of renewable energy, and wind power in particular, requires accurate short-term forecasting to ensure grid stability, reduce operational uncertainty, and facilitate large-scale integration of intermittent resources. This study evaluates Transformer-based architectures for wind power forecasting using hourly generation data from Spain (2020–2024). Time series were segmented into input windows of 12, 24, and 36 h, and multiple model configurations were systematically tested. For benchmarking, LSTM and GRU models were trained under identical protocols. The results show that the Transformer consistently outperformed recurrent baselines across all horizons. The best configuration, using a 36 h input sequence with moderate dimensionality and shallow depth, achieved an RMSE of 370.71 MW, MAE of 258.77 MW, and MAPE of 4.92, reducing error by a significant margin compared to LSTM and GRU models, whose best performances reached RMSEs above 395 MW and MAPEs above 5.7. Beyond predictive accuracy, attention maps revealed that the Transformer effectively captured short-term fluctuations while also attending to longer-range dependencies, offering a transparent mechanism for interpreting the contribution of historical information to forecasts. These findings demonstrate the superior performance of Transformer-based models in short-term wind power forecasting, underscoring their capacity to deliver more accurate and interpretable predictions that support the reliable integration of renewable energy into modern power systems. | en-GB |
dc.language.iso | en-GB | es_ES |
dc.source | Revista: Sustainability, Periodo: 1, Volumen: online, Número: 19, Página inicial: 8655-1, Página final: 8655-21 | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) - Innovación docente y Analytics (GIIDA) | es_ES |
dc.title | Enhancing Wind Power Forecasting in the Spanish Market Through Transformer Neural Networks and Temporal Optimization | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | wind power forecasting; transformer models; deep learning; short-term forecasting; renewable energy integration; sustainable energy systems | en-GB |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-25-308R | 2,23 MB | Unknown | Visualizar/Abrir | |
IIT-25-308R_preview | 3,66 kB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.