Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/105794
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCifuentes Quintero, Jenny Alexandraes-ES
dc.contributor.authorMarulanda García, Geovanny Albertoes-ES
dc.date.accessioned2025-10-01T12:55:43Z-
dc.date.available2025-10-01T12:55:43Z-
dc.date.issued2025-10-01es_ES
dc.identifier.issn2071-1050es_ES
dc.identifier.urihttps:doi.org10.3390su17198655es_ES
dc.identifier.urihttp://hdl.handle.net/11531/105794-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThe increasing penetration of renewable energy, and wind power in particular, requires accurate short-term forecasting to ensure grid stability, reduce operational uncertainty, and facilitate large-scale integration of intermittent resources. This study evaluates Transformer-based architectures for wind power forecasting using hourly generation data from Spain (2020–2024). Time series were segmented into input windows of 12, 24, and 36 h, and multiple model configurations were systematically tested. For benchmarking, LSTM and GRU models were trained under identical protocols. The results show that the Transformer consistently outperformed recurrent baselines across all horizons. The best configuration, using a 36 h input sequence with moderate dimensionality and shallow depth, achieved an RMSE of 370.71 MW, MAE of 258.77 MW, and MAPE of 4.92, reducing error by a significant margin compared to LSTM and GRU models, whose best performances reached RMSEs above 395 MW and MAPEs above 5.7. Beyond predictive accuracy, attention maps revealed that the Transformer effectively captured short-term fluctuations while also attending to longer-range dependencies, offering a transparent mechanism for interpreting the contribution of historical information to forecasts. These findings demonstrate the superior performance of Transformer-based models in short-term wind power forecasting, underscoring their capacity to deliver more accurate and interpretable predictions that support the reliable integration of renewable energy into modern power systems.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Sustainability, Periodo: 1, Volumen: online, Número: 19, Página inicial: 8655-1, Página final: 8655-21es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT) - Innovación docente y Analytics (GIIDA)es_ES
dc.titleEnhancing Wind Power Forecasting in the Spanish Market Through Transformer Neural Networks and Temporal Optimizationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordswind power forecasting; transformer models; deep learning; short-term forecasting; renewable energy integration; sustainable energy systemsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-308R2,23 MBUnknownVisualizar/Abrir
IIT-25-308R_preview3,66 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.