Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/106393
Título : | The MERIT Dataset: Modelling and efficiently rendering interpretable transcripts |
Autor : | de Rodrigo Tobías, Ignacio Boal Martín-Larrauri, Jaime López López, Álvaro Jesús |
Fecha de publicación : | 1-abr-2026 |
Resumen : | This paper introduces the MERIT Dataset, a multimodal, fully labeled dataset of school grade reports. Comprising over 400 labels and 33k samples, the MERIT Dataset is a resource for training models in demanding Visually-rich Document Understanding tasks. It contains multimodal features that link patterns in the textual, visual, and layout domains. The MERIT Dataset also includes biases in a controlled way, making it a valuable tool to benchmark biases induced in Language Models. The paper outlines the dataset’s generation pipeline and highlights its main features and patterns in its different domains. We benchmark the dataset for token classification, showing that it poses a significant challenge even for SOTA models. |
Descripción : | Artículos en revistas |
URI : | https:doi.org10.1016j.patcog.2025.112502 |
ISSN : | 0031-3203 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-25-307R_preprint | 5,08 MB | Unknown | Visualizar/Abrir | |
IIT-25-307R_preview | 2,77 kB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.