Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/106399
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBellido López, Francisco Javieres-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorMuñoz San Roque, Antonioes-ES
dc.contributor.authorGonzález Calvo, Danieles-ES
dc.contributor.authorÁlvarez Tejedor, Tomáses-ES
dc.date.accessioned2025-10-16T12:28:00Z-
dc.date.available2025-10-16T12:28:00Z-
dc.date.issued2025-10-02es_ES
dc.identifier.issn2076-3417es_ES
dc.identifier.urihttps:doi.org10.3390app152010998es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractIn predictive maintenance frameworks, risk curves are used as interpretable, real-time indicators of equipment degradation. However, existing approaches generally assume a monotonically increasing trend and neglect the corrective effect of maintenance, resulting in unrealistic or overly conservative risk estimations. This paper addresses this limitation by introducing a novel method that dynamically corrects risk curves through a quantitative measure of maintenance effectiveness. The method adjusts the evolution of risk to reflect the actual impact of preventive and corrective interventions, providing a more realistic and traceable representation of asset condition. The approach is validated with case studies on critical feedwater pumps in a combined-cycle power plant. First, individual maintenance actions are analyzed for a single failure mode to assess their direct effectiveness. Second, the cross-mode impact of a corrective intervention is evaluated, revealing both direct and indirect effects. Third, corrected risk curves are compared across two redundant pumps to benchmark maintenance performance, showing similar behavior until 2023, after which one unit accumulated uncontrolled risk while the other remained stable near zero, reflected in their overall performance indicators (0.67 vs. 0.88). These findings demonstrate that maintenance-corrected risk curves enhance diagnostic accuracy, enable benchmarking between comparable assets, and provide a missing piece for the development of realistic, risk-informed predictive maintenance strategies.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Applied Sciences, Periodo: 1, Volumen: online, Número: 20, Página inicial: 10998-1, Página final: 10998-21es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleMaintenance-Aware Risk Curves: Correcting Degradation Models with Intervention Effectivenesses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsrisk curves; predictive maintenance (PdM); maintenance effectiveness; Condition-Based Monitoring (CBM); Prognosis and Health Management (PHM); power plant pumps; reliability engineeringen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-327R2,67 MBUnknownVisualizar/Abrir
IIT-25-327R_preview3,76 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.