Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/106400
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCastro Ponce, Marioes-ES
dc.contributor.authorVida Delgado, Rafael Ángeles-ES
dc.contributor.authorCuesta, José A.es-ES
dc.date.accessioned2025-10-16T12:28:25Z-
dc.date.available2025-10-16T12:28:25Z-
dc.date.issued2025-10-01es_ES
dc.identifier.issn1742-5689es_ES
dc.identifier.urihttps:doi.org10.1098rsif.2025.0183es_ES
dc.identifier.urihttp://hdl.handle.net/11531/106400-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractMetagenomic data has significantly advanced microbiome research by employing ecological models, particularly in personalized medicine. The generalized Lotka–Volterra (gLV) model is commonly used to understand microbial interactions and predict ecosystem dynamics. However, gLV models often fail to capture complex interactions, especially when data are limited or noisy. This study critically assesses the effectiveness of gLV and similar models using Bayesian inference and a model reduction method based on information theory. We found that ecological data often leads to non-interpretability and overfitting due to limited information, noisy data and parameter sloppiness. Our results highlight the need for simpler models that align with the available data and propose a distribution-based approach to better capture ecosystem diversity, stability and competition. These findings challenge current bottom-up ecological modelling practices and aim to shift the focus towards a statistical mechanics view of ecology based on distributions of parameters.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Journal of the Royal Society Interface, Periodo: 1, Volumen: online, Número: 231, Página inicial: 20250183-1, Página final: 20250183-11es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT) - Dinámica No Lineales_ES
dc.titleScarce data, noisy inferences and overfitting: the hidden flaws in ecological dynamics modellinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsMicrobial Growth, Logistic Model, Macroecological Patterns, Environmental Fluctuationsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-320R_preprint1,49 MBUnknownVisualizar/Abrir
IIT-25-320R_preview2,98 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.