Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/106520
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPolo Molina, Alejandroes-ES
dc.contributor.authorAlfaya Sánchez, Davides-ES
dc.contributor.authorPortela González, Josées-ES
dc.date.accessioned2025-10-21T11:30:59Z-
dc.date.available2025-10-21T11:30:59Z-
dc.date.issued2025-10-14es_ES
dc.identifier.issn2162-237Xes_ES
dc.identifier.urihttps:doi.org10.1109TNNLS.2025.3614431es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractArtificial neural networks (ANNs) have become a powerful tool for modeling complex relationships in large-scale datasets. However, their closed box nature poses trustworthiness challenges. In certain situations, ensuring trust in predictions might require following specific partial monotonicity constraints. However, certifying if an already-trained ANN is partially monotonic is challenging. Therefore, ANNs are often disregarded in some critical applications, such as credit scoring, where partial monotonicity is required. To address this challenge, this article presents a novel algorithm (LipVor) that certifies if a closed box model, such as an ANN, is positive based on a finite number of evaluations. Consequently, since partial monotonicity can be expressed as a positivity condition on partial derivatives, LipVor can certify whether an ANN is partially monotonic. To do so, for every positively evaluated point, the Lipschitzianity of the closed box model is used to construct a specific neighborhood, where the function remains positive. Next, based on the Voronoi diagram of the evaluated points, a sufficient condition is stated to certify if the function is positive in the domain. Unlike prior methods, our approach certifies partial monotonicity without constrained architectures or piecewise linear activations. Therefore, LipVor could open up the possibility of using unconstrained ANN in some critical fields. Moreover, some other properties of an ANN, such as convexity, can be posed as positivity conditions, and therefore, LipVor could also be applied.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: IEEE Transactions on Neural Networks and Learning Systems, Periodo: 1, Volumen: En imprenta, Número: , Página inicial: 0, Página final: 0es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT) - Innovación docente y Analytics (GIIDA)es_ES
dc.titleA Mathematical Certification for Positivity Conditions in Neural Networks With Applications to Partial Monotonicity and Trustworthy AIes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsArtificial neural networks (ANNs), mathematical certification, partial monotonicity, trustworthy AIen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-329R_preview3,6 kBUnknownVisualizar/Abrir
IIT-25-329R_preprint1,47 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.