Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/106686
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEscolá Gascon, Alexes-ES
dc.contributor.authorBenito León, Juliánes-ES
dc.date.accessioned2025-10-23T10:21:26Z-
dc.date.available2025-10-23T10:21:26Z-
dc.date.issued2025-04-26es_ES
dc.identifier.issn2001-0370es_ES
dc.identifier.urihttps://doi.org/10.1016/j.csbj.2025.04.025es_ES
dc.identifier.urihttp://hdl.handle.net/11531/106686-
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractQuantum theories have long sought to explain conscious experience, yet their biggest challenge is not conceptual but methodological. A critical gap remains: the lack of statistical tools capable of empirically testing these theories against objective reality. This study introduces and formalizes the Q of Fisher-Escola ` distribution, the first statistical model to integrate quantum and classical probabilities, enabling robust inferential analysis in neuroscience and consciousness studies. We examined 150 density matrices of entangled states in a 10-qubit quantum system using IBM’s quantum supercomputers. Through maximum likelihood estimation, we mathematically confirmed that QFisher-Escola ` ~ beta(a, b, loc, scale). As a key contribution, a novel analytical solution to the Quantum Fisher Information (QFI) integral was derived, improving decoherence stability. Additionally, 10⁵ Monte Carlo simulations allowed us to establish critical thresholds for α = 0.05, 0.01, 0.001, and 0.0001, while assessing Type I and II error rates. Type I errors appeared in 2–5 % of right-tailed tests at α = 0.05 but approached zero as α decreased. Type II errors occurred in left-tailed tests (1–4 % at α = 0.05) but also diminished with stricter significance levels. In two-tailed tests, both error types remained below 3 %, highlighting the distribution’s robustness. The Q of Fisher-Escola ` distribution pioneers a statistical framework for modeling quantum-classical interactions in consciousness research. It enables hypothesis testing and predicting subjective experiences, with applications in neuroscience and computational automation. Supported by mathematical proofs and empirical validation, this model advances the integration of quantum probability into neuroscience.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Computational and Structural Biotechnology Journal, Periodo: 1, Volumen: 30, Número: , Página inicial: 41, Página final: 58es_ES
dc.titleMathematical proof of the Fisher-Escola ` Q statistical distribution in quantum consciousness modelinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsQuantum consciousness Quantum Fisher Information Hypothesis testing Q Fisher-Escola ` Distribution Quantum entanglementen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
20251023101016264_PIIS2001037025001461 (2).pdf3,12 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.