Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/107158
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGonzález-Ruano Iriarte, Césares-ES
dc.date.accessioned2025-11-12T15:20:51Z-
dc.date.available2025-11-12T15:20:51Z-
dc.date.issued2025-09-01es_ES
dc.identifier.issn2768-5608es_ES
dc.identifier.urihttps:doi.org10.1103xbgg-gttces_ES
dc.identifier.urihttp://hdl.handle.net/11531/107158-
dc.descriptionArtículos en revistases_ES
dc.description.abstractRecent studies have revealed magnetically controllable thermoelectric effects in superconductorferromagnet (SF) structures. A tunable cryogenic thermoelectric generator needs not only a high conversion factor between electricity and heat, but also a large change in the thermoelectric output when switching the magnetic state of the device. However, the reported modifications in thermoelectric power are either minimal, involve superconductors with relatively low critical temperatures (below 1 K), or do not utilize commercially available spintronic materials. Here, we experimentally measure and numerically model thermoelectric effects in fully epitaxial ferromagnetsuperconductorferromagnet (FSF) junctions based on commercially available easily grown materials, as well as their dependence on the magnetic configuration of the ferromagnetic (F) electrodes. We observe sizeable Seebeck coefficients for the parallel alignment of the F electrodes, reaching values of about 100 µVK. Importantly, we find a decrease of the thermoelectric signal of more than an order of magnitude when switching from a parallel to an antiparallel configuration, constituting a large thermoelectric spin-valve effect. Theoretical modeling based on a self-consistent nonequilibrium Keldysh-Usadel Green's function theory, combined with micromagnetic simulations, qualitatively reproduce the experimental findings. The thermoelectric effect is optimized when there is a large spin-dependent electron-hole asymmetry in the superconductor combined with spin-dependent transmission through the interfaces. These findings pave the way for the development of efficient and versatile cryogenic thermoelectric heat engines.es-ES
dc.description.abstractRecent studies have revealed magnetically controllable thermoelectric effects in superconductorferromagnet (SF) structures. A tunable cryogenic thermoelectric generator needs not only a high conversion factor between electricity and heat, but also a large change in the thermoelectric output when switching the magnetic state of the device. However, the reported modifications in thermoelectric power are either minimal, involve superconductors with relatively low critical temperatures (below 1 K), or do not utilize commercially available spintronic materials. Here, we experimentally measure and numerically model thermoelectric effects in fully epitaxial ferromagnetsuperconductorferromagnet (FSF) junctions based on commercially available easily grown materials, as well as their dependence on the magnetic configuration of the ferromagnetic (F) electrodes. We observe sizeable Seebeck coefficients for the parallel alignment of the F electrodes, reaching values of about 100 µVK. Importantly, we find a decrease of the thermoelectric signal of more than an order of magnitude when switching from a parallel to an antiparallel configuration, constituting a large thermoelectric spin-valve effect. Theoretical modeling based on a self-consistent nonequilibrium Keldysh-Usadel Green's function theory, combined with micromagnetic simulations, qualitatively reproduce the experimental findings. The thermoelectric effect is optimized when there is a large spin-dependent electron-hole asymmetry in the superconductor combined with spin-dependent transmission through the interfaces. These findings pave the way for the development of efficient and versatile cryogenic thermoelectric heat engines.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: PRX Energy, Periodo: 1, Volumen: online, Número: 3, Página inicial: 033003-1, Página final: 033003-10es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleLarge Tunable Thermoelectric Effects in Superconducting Spin Valves with Commercially Available Materialses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsElectrical conductivity; Electrical properties; Magnetism; Micromagnetism; Spintronics; Superconductivity; Thermoelectricses-ES
dc.keywordsElectrical conductivity; Electrical properties; Magnetism; Micromagnetism; Spintronics; Superconductivity; Thermoelectricsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-292R1,18 MBUnknownVisualizar/Abrir
IIT-25-292R_preview3,77 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.