Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/107352
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRico Cabrera, Javieres-ES
dc.date.accessioned2025-11-25T14:33:04Z-
dc.date.available2025-11-25T14:33:04Z-
dc.date.issued2026-02-15es_ES
dc.identifier.issn0024-3795es_ES
dc.identifier.urihttps:doi.org10.1016j.laa.2025.11.010es_ES
dc.identifier.urihttp://hdl.handle.net/11531/107352-
dc.descriptionArtículos en revistases_ES
dc.description.abstractWe propose and investigate a bi-infinite matrix approach to the multiplication and composition of formal Laurent series. We generalize the concept of Riordan matrix to this bi-infinite context, obtaining matrices that are not necessarily lower triangular and are determined, not by a pair of formal power series, but by a pair of formal Laurent series. We extend the First Fundamental Theorem of Riordan Matrices to this setting, as well as the Toeplitz and Lagrange subgroups, that are subgroups of the classical Riordan group. Finally, as an illustrative example, we apply our approach to derive a classical combinatorial identity that cannot be proved using the techniques related to the classical Riordan group, showing that our generalization is not fruitless.es-ES
dc.description.abstractWe propose and investigate a bi-infinite matrix approach to the multiplication and composition of formal Laurent series. We generalize the concept of Riordan matrix to this bi-infinite context, obtaining matrices that are not necessarily lower triangular and are determined, not by a pair of formal power series, but by a pair of formal Laurent series. We extend the First Fundamental Theorem of Riordan Matrices to this setting, as well as the Toeplitz and Lagrange subgroups, that are subgroups of the classical Riordan group. Finally, as an illustrative example, we apply our approach to derive a classical combinatorial identity that cannot be proved using the techniques related to the classical Riordan group, showing that our generalization is not fruitless.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Linear Algebra and its Applications, Periodo: 1, Volumen: online, Número: , Página inicial: 139, Página final: 159es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleBi-infinite Riordan matrices: A matricial approach to multiplication and composition of formal Laurent serieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsFormal Laurent series; Bi-infinite matrices; Riordan groupes-ES
dc.keywordsFormal Laurent series; Bi-infinite matrices; Riordan groupen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-26-007R826,56 kBUnknownVisualizar/Abrir
IIT-26-007R_preview2,66 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.