Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/107352Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Rico Cabrera, Javier | es-ES |
| dc.date.accessioned | 2025-11-25T14:33:04Z | - |
| dc.date.available | 2025-11-25T14:33:04Z | - |
| dc.date.issued | 2026-02-15 | es_ES |
| dc.identifier.issn | 0024-3795 | es_ES |
| dc.identifier.uri | https:doi.org10.1016j.laa.2025.11.010 | es_ES |
| dc.identifier.uri | http://hdl.handle.net/11531/107352 | - |
| dc.description | Artículos en revistas | es_ES |
| dc.description.abstract | We propose and investigate a bi-infinite matrix approach to the multiplication and composition of formal Laurent series. We generalize the concept of Riordan matrix to this bi-infinite context, obtaining matrices that are not necessarily lower triangular and are determined, not by a pair of formal power series, but by a pair of formal Laurent series. We extend the First Fundamental Theorem of Riordan Matrices to this setting, as well as the Toeplitz and Lagrange subgroups, that are subgroups of the classical Riordan group. Finally, as an illustrative example, we apply our approach to derive a classical combinatorial identity that cannot be proved using the techniques related to the classical Riordan group, showing that our generalization is not fruitless. | es-ES |
| dc.description.abstract | We propose and investigate a bi-infinite matrix approach to the multiplication and composition of formal Laurent series. We generalize the concept of Riordan matrix to this bi-infinite context, obtaining matrices that are not necessarily lower triangular and are determined, not by a pair of formal power series, but by a pair of formal Laurent series. We extend the First Fundamental Theorem of Riordan Matrices to this setting, as well as the Toeplitz and Lagrange subgroups, that are subgroups of the classical Riordan group. Finally, as an illustrative example, we apply our approach to derive a classical combinatorial identity that cannot be proved using the techniques related to the classical Riordan group, showing that our generalization is not fruitless. | en-GB |
| dc.language.iso | en-GB | es_ES |
| dc.source | Revista: Linear Algebra and its Applications, Periodo: 1, Volumen: online, Número: , Página inicial: 139, Página final: 159 | es_ES |
| dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
| dc.title | Bi-infinite Riordan matrices: A matricial approach to multiplication and composition of formal Laurent series | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
| dc.rights.holder | es_ES | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
| dc.keywords | Formal Laurent series; Bi-infinite matrices; Riordan group | es-ES |
| dc.keywords | Formal Laurent series; Bi-infinite matrices; Riordan group | en-GB |
| Aparece en las colecciones: | Artículos | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| IIT-26-007R | 826,56 kB | Unknown | Visualizar/Abrir | |
| IIT-26-007R_preview | 2,66 kB | Unknown | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.