Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/108332
Título : Parabolic vector bundles and Lie algebroid connections
Autor : Alfaya Sánchez, David
Biswas, Indranil
Kumar, Pradip
Singh, Anoop
Fecha de publicación : 29-dic-2025
Resumen : Given a holomorphic Lie algebroid on an m-pointed connected Riemann surface, we define parabolic Lie algebroid connections on any parabolic vector bundle equipped with parabolic structure over the marked points. An analog of the Atiyah exact sequence for parabolic Lie algebroids is constructed. For any Lie algebroid whose underlying holomorphic vector bundle is stable, we give a complete characterization of all the parabolic vector bundles that admit a parabolic Lie algebroid connection.
Given a holomorphic Lie algebroid on an m-pointed connected Riemann surface, we define parabolic Lie algebroid connections on any parabolic vector bundle equipped with parabolic structure over the marked points. An analog of the Atiyah exact sequence for parabolic Lie algebroids is constructed. For any Lie algebroid whose underlying holomorphic vector bundle is stable, we give a complete characterization of all the parabolic vector bundles that admit a parabolic Lie algebroid connection.
Descripción : Artículos en revistas
URI : https://doi.org/10.4153/S0008414X25101983
http://hdl.handle.net/11531/108332
ISSN : 0008-414X
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-26-034R_preprint458,32 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.