Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/108572
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAguayo Martín, Sofíaes-ES
dc.contributor.authorDonate-Beby, Belénes-ES
dc.contributor.authorAmo-Filva, Danieles-ES
dc.contributor.authorLlauró, Albaes-ES
dc.contributor.authorSimón Grabalos, Davides-ES
dc.contributor.authorAlsina Claret, Maríaes-ES
dc.contributor.authorFonseca Escudero, Davides-ES
dc.contributor.authorNecchi, Silviaes-ES
dc.contributor.authorRomero Yesa, Susanaes-ES
dc.contributor.authorAláez Martínez, Marianes-ES
dc.contributor.authorTorres Lucas, Jorgees-ES
dc.contributor.authorMartínez Felipe, Maríaes-ES
dc.date.accessioned2026-02-05T11:05:07Z-
dc.date.available2026-02-05T11:05:07Z-
dc.date.issued2025-07-15es_ES
dc.identifier.urihttps://doi.org/10.1007/978-981-96-5658-5_111es_ES
dc.descriptionCapítulos en libroses_ES
dc.description.abstract.es-ES
dc.description.abstract.The high student dropout rates and academic failuresin Spanish higher education institutions have been a persistent issue. Spain is among the European Union countries with the worst dropout rates, with recent data from the University Ministry indicating a 33.2% dropout rate in the 2022–2023 academic year. The multifaceted nature of dropout factors includes low academic performance, poor social support, low socio-economic status, pessimism, and lack of motivation. Despite efforts to address these issues, dropout rates remain high, necessitating more effective solutions. This study employs a longitudinal design to test the alignment of tutors’ and students’ perceptions with machine learning predictions. The analysissuggeststhat a combined approach, integrating human insights and machine learning, enhances predictive accuracy. The findings highlight the critical role of human judgment in capturing qualitative aspects that data-driven models might miss, advocating for a synergistic approach to improve educational outcomes.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherSpringer Nature (Berlin, Alemania)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: Proceedings of TEEM 2024. TEEM2024 2024. Lecture Notes in Educational Technology, Página inicial: 1129, Página final: 1138es_ES
dc.titleHuman vs Machine Learning: Best Approach to Early Detect University Dropout Rateses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderpolítica editoriales_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywords.es-ES
dc.keywords.Higher Education · Early Dropout · Machine Learning · Prediction · Tutoring · First-year Studenten-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
20262493156679_Human vs Machine TEEM 2024.pdf296,7 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.