Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/108572Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Aguayo Martín, Sofía | es-ES |
| dc.contributor.author | Donate-Beby, Belén | es-ES |
| dc.contributor.author | Amo-Filva, Daniel | es-ES |
| dc.contributor.author | Llauró, Alba | es-ES |
| dc.contributor.author | Simón Grabalos, David | es-ES |
| dc.contributor.author | Alsina Claret, María | es-ES |
| dc.contributor.author | Fonseca Escudero, David | es-ES |
| dc.contributor.author | Necchi, Silvia | es-ES |
| dc.contributor.author | Romero Yesa, Susana | es-ES |
| dc.contributor.author | Aláez Martínez, Marian | es-ES |
| dc.contributor.author | Torres Lucas, Jorge | es-ES |
| dc.contributor.author | Martínez Felipe, María | es-ES |
| dc.date.accessioned | 2026-02-05T11:05:07Z | - |
| dc.date.available | 2026-02-05T11:05:07Z | - |
| dc.date.issued | 2025-07-15 | es_ES |
| dc.identifier.uri | https://doi.org/10.1007/978-981-96-5658-5_111 | es_ES |
| dc.description | Capítulos en libros | es_ES |
| dc.description.abstract | . | es-ES |
| dc.description.abstract | .The high student dropout rates and academic failuresin Spanish higher education institutions have been a persistent issue. Spain is among the European Union countries with the worst dropout rates, with recent data from the University Ministry indicating a 33.2% dropout rate in the 2022–2023 academic year. The multifaceted nature of dropout factors includes low academic performance, poor social support, low socio-economic status, pessimism, and lack of motivation. Despite efforts to address these issues, dropout rates remain high, necessitating more effective solutions. This study employs a longitudinal design to test the alignment of tutors’ and students’ perceptions with machine learning predictions. The analysissuggeststhat a combined approach, integrating human insights and machine learning, enhances predictive accuracy. The findings highlight the critical role of human judgment in capturing qualitative aspects that data-driven models might miss, advocating for a synergistic approach to improve educational outcomes. | en-GB |
| dc.format.mimetype | application/pdf | es_ES |
| dc.language.iso | en-GB | es_ES |
| dc.publisher | Springer Nature (Berlin, Alemania) | es_ES |
| dc.rights | es_ES | |
| dc.rights.uri | es_ES | |
| dc.source | Libro: Proceedings of TEEM 2024. TEEM2024 2024. Lecture Notes in Educational Technology, Página inicial: 1129, Página final: 1138 | es_ES |
| dc.title | Human vs Machine Learning: Best Approach to Early Detect University Dropout Rates | es_ES |
| dc.type | info:eu-repo/semantics/bookPart | es_ES |
| dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
| dc.rights.holder | política editorial | es_ES |
| dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es_ES |
| dc.keywords | . | es-ES |
| dc.keywords | .Higher Education · Early Dropout · Machine Learning · Prediction · Tutoring · First-year Student | en-GB |
| Aparece en las colecciones: | Artículos | |
Ficheros en este ítem:
| Fichero | Tamaño | Formato | |
|---|---|---|---|
| 20262493156679_Human vs Machine TEEM 2024.pdf | 296,7 kB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.