Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/108601Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Gurkan, Zeynep Goze | es-ES |
| dc.contributor.author | Dueñas Martínez, Pablo | es-ES |
| dc.contributor.author | Kocaman, Ayse Selin | es-ES |
| dc.date.accessioned | 2026-02-06T08:56:53Z | - |
| dc.date.available | 2026-02-06T08:56:53Z | - |
| dc.date.issued | 2026-06-01 | es_ES |
| dc.identifier.issn | 0973-0826 | es_ES |
| dc.identifier.uri | https://doi.org/10.1016/j.esd.2026.101947 | es_ES |
| dc.identifier.uri | http://hdl.handle.net/11531/108601 | - |
| dc.description | Artículos en revistas | es_ES |
| dc.description.abstract | Liquefied Petroleum Gas (LPG) is a key clean cooking alternative to biomass, especially in developing countries where household air pollution remains a major concern. This study proposes a scalable decision-making framework for the design of LPG distribution networks, using Rwanda as a case study. We formulate a hierarchical location–allocation model as a Mixed-Integer Linear Program (MILP), leveraging a large-scale dataset with rooftop-level LPG demand for over 3.3 million households across Rwanda. To enable tractable, country-scale optimization, we adopt two complementary strategies: (i) a time-aggregated formulation assuming stable seasonal demand, and (ii) a spatial aggregation method based on agglomerative hierarchical clustering, which places retailers at distance-constrained geomedian points of rooftop clusters. We compare this clustering-based approach against a benchmark that uses village centroids for retailer siting, demonstrating cost savings and improved spatial fairness. Additionally, we assess the scalability of the system under projected demand growth and evaluate infrastructure–transportation trade-offs under fluctuating diesel prices. Our findings underscore the potential of data-driven planning tools in advancing equitable access to clean cooking solutions. | es-ES |
| dc.description.abstract | Liquefied Petroleum Gas (LPG) is a key clean cooking alternative to biomass, especially in developing countries where household air pollution remains a major concern. This study proposes a scalable decision-making framework for the design of LPG distribution networks, using Rwanda as a case study. We formulate a hierarchical location–allocation model as a Mixed-Integer Linear Program (MILP), leveraging a large-scale dataset with rooftop-level LPG demand for over 3.3 million households across Rwanda. To enable tractable, country-scale optimization, we adopt two complementary strategies: (i) a time-aggregated formulation assuming stable seasonal demand, and (ii) a spatial aggregation method based on agglomerative hierarchical clustering, which places retailers at distance-constrained geomedian points of rooftop clusters. We compare this clustering-based approach against a benchmark that uses village centroids for retailer siting, demonstrating cost savings and improved spatial fairness. Additionally, we assess the scalability of the system under projected demand growth and evaluate infrastructure–transportation trade-offs under fluctuating diesel prices. Our findings underscore the potential of data-driven planning tools in advancing equitable access to clean cooking solutions. | en-GB |
| dc.format.mimetype | application/pdf | es_ES |
| dc.language.iso | en-GB | es_ES |
| dc.source | Revista: Energy for Sustainable Development, Periodo: 1, Volumen: online, Número: , Página inicial: 101947-1, Página final: 101947-13 | es_ES |
| dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
| dc.title | Data-driven location–allocation for clean cooking LPG supply chains: A mixed-integer programming approach for Rwanda | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
| dc.rights.holder | es_ES | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
| dc.keywords | Clean cooking; Mixed-integer linear programming; Location–allocation; Agglomerative clustering; Energy access planning; Supply chain optimization; Sustainable development goal 7 | es-ES |
| dc.keywords | Clean cooking; Mixed-integer linear programming; Location–allocation; Agglomerative clustering; Energy access planning; Supply chain optimization; Sustainable development goal 7 | en-GB |
| Aparece en las colecciones: | Artículos | |
Ficheros en este ítem:
| Fichero | Tamaño | Formato | |
|---|---|---|---|
| IIT-26-045R_preview.pdf | 3,42 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.