Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/108601
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGurkan, Zeynep Gozees-ES
dc.contributor.authorDueñas Martínez, Pabloes-ES
dc.contributor.authorKocaman, Ayse Selines-ES
dc.date.accessioned2026-02-06T08:56:53Z-
dc.date.available2026-02-06T08:56:53Z-
dc.date.issued2026-06-01es_ES
dc.identifier.issn0973-0826es_ES
dc.identifier.urihttps://doi.org/10.1016/j.esd.2026.101947es_ES
dc.identifier.urihttp://hdl.handle.net/11531/108601-
dc.descriptionArtículos en revistases_ES
dc.description.abstractLiquefied Petroleum Gas (LPG) is a key clean cooking alternative to biomass, especially in developing countries where household air pollution remains a major concern. This study proposes a scalable decision-making framework for the design of LPG distribution networks, using Rwanda as a case study. We formulate a hierarchical location–allocation model as a Mixed-Integer Linear Program (MILP), leveraging a large-scale dataset with rooftop-level LPG demand for over 3.3 million households across Rwanda. To enable tractable, country-scale optimization, we adopt two complementary strategies: (i) a time-aggregated formulation assuming stable seasonal demand, and (ii) a spatial aggregation method based on agglomerative hierarchical clustering, which places retailers at distance-constrained geomedian points of rooftop clusters. We compare this clustering-based approach against a benchmark that uses village centroids for retailer siting, demonstrating cost savings and improved spatial fairness. Additionally, we assess the scalability of the system under projected demand growth and evaluate infrastructure–transportation trade-offs under fluctuating diesel prices. Our findings underscore the potential of data-driven planning tools in advancing equitable access to clean cooking solutions.es-ES
dc.description.abstractLiquefied Petroleum Gas (LPG) is a key clean cooking alternative to biomass, especially in developing countries where household air pollution remains a major concern. This study proposes a scalable decision-making framework for the design of LPG distribution networks, using Rwanda as a case study. We formulate a hierarchical location–allocation model as a Mixed-Integer Linear Program (MILP), leveraging a large-scale dataset with rooftop-level LPG demand for over 3.3 million households across Rwanda. To enable tractable, country-scale optimization, we adopt two complementary strategies: (i) a time-aggregated formulation assuming stable seasonal demand, and (ii) a spatial aggregation method based on agglomerative hierarchical clustering, which places retailers at distance-constrained geomedian points of rooftop clusters. We compare this clustering-based approach against a benchmark that uses village centroids for retailer siting, demonstrating cost savings and improved spatial fairness. Additionally, we assess the scalability of the system under projected demand growth and evaluate infrastructure–transportation trade-offs under fluctuating diesel prices. Our findings underscore the potential of data-driven planning tools in advancing equitable access to clean cooking solutions.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Energy for Sustainable Development, Periodo: 1, Volumen: online, Número: , Página inicial: 101947-1, Página final: 101947-13es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleData-driven location–allocation for clean cooking LPG supply chains: A mixed-integer programming approach for Rwandaes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsClean cooking; Mixed-integer linear programming; Location–allocation; Agglomerative clustering; Energy access planning; Supply chain optimization; Sustainable development goal 7es-ES
dc.keywordsClean cooking; Mixed-integer linear programming; Location–allocation; Agglomerative clustering; Energy access planning; Supply chain optimization; Sustainable development goal 7en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-26-045R_preview.pdf3,42 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.