Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/15458
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMaté Jiménez, Carloses-ES
dc.contributor.authorRedondo Gomez-Casero, Javieres-ES
dc.date.accessioned2016-11-28T04:07:55Z-
dc.date.available2016-11-28T04:07:55Z-
dc.date.issued2016-08-23es_ES
dc.identifier.urihttp://hdl.handle.net/11531/15458-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractAn interval time series (ITS) assigns to each period an interval covering the values taken by the variable. Each interval has four characteristic attributes, since it can be defined in terms of lower and upper boundaries, center and radius. The analysis and forecasting of ITS is a very young research area, dating back less than 15 years, and still presents a wide array of open issues. One main issue with time series in a big data context consists of deciding if to handle it as classic time series (CTS) or to proceed with some kind of aggregation in order to get a time series of symbolic data like ITS. Using the k-Nearest Neighbours (kNN) method, in this paper both approaches are applied to forecast exchange rates. Based on usual distances for interval-valued data such as Haussdorff, Ichino-Yaguchi and so on; the reduction in mean distance error using ITS instead of CTS suggests that the ITS approach could be a better way to forecast exchange rates using large data or data streaming. Some interesting conclusions about monthly and daily aggregation horizons are obtained and further research issues are proposed.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherInternational Association for Statistical Computing; International Statistical Institute (Oviedo, España)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: 22nd International Conference on Computational Statistics - COMPSTAT 2016, Página inicial: 303-314, Página final: 314es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleForecasting financial time big data using interval time serieses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsexchange rates, interval analysis, interval-valued data, kNN, symbolic data analysisen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-16-153A.pdf334,09 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.