Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/15477
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGallego Vega, Luis Eduardoes-ES
dc.contributor.authorDuarte, Oscares-ES
dc.contributor.authorDelgadillo Vega, Andrés Ramiroes-ES
dc.date.accessioned2016-11-29T04:12:09Z-
dc.date.available2016-11-29T04:12:09Z-
dc.date.issued2008-10-10es_ES
dc.identifier.urihttp://hdl.handle.net/11531/15477-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractIn this paper, a multi-agent model of an electricity market is proposed using the Agent-based Computational Economics (ACE) methodology. The proposed methodology for modeling the bidding price behavior of Generation Companies (GENCOs) is based on a reinforcement learning algorithm (QLearning) that uses some soft computing techniques to face the discovery of a complex function among bidding prices, states and profits. The proposed model also comprise the power system operation of a large-scale system by simulating Optimal DC Power Flows (DCOPF) in order to obtain real dispatches of agents and a mapping from action space (bidding strategies) to quantities dispatched. In this model, agents are provided with learning capabilities so that they learn to bid depending on market prices and their risk perception so that profits are maximized. The proposed methodology is applied on colombian power market and some results about bidding strategies dynamics are shown. In addition, a new index defined as rate of market exploitation is introduced in order to characterize the agents bidding behavior.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherSin editorial (Bogotá, Colombia)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: IEEE/PES Transmission and Distribution Latin America Conference and Exposition - IEEE PES T&D-LA 2008, Página inicial: 1, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleStrategic bidding in Colombian Electricity market using a multi-agent learning approaches_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsAgent-based Computational Economics, Bidding prices, Electricity Market, Reinforcement learning.en-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-08-065A.pdf4,92 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.