Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/16063
Título : Smart traffic-scenario compressor for the efficient electrical simulation of mass transit systems
Autor : López López, Álvaro Jesús
Rodríguez Pecharromán, Ramón
Fernández Cardador, Antonio
Cucala García, María Asunción
Fecha de publicación : 1-jun-2017
Resumen : 
The electrical infrastructure of DC-electrified mass transit systems (MTSs) is currently under review. The improvement of MTS infrastructure is commonly tackled by means of optimisation studies. These optimisers usually take large times to obtain their solutions, mainly due to the traffic scenarios that must be taken into account. The optimisation time may be reduced by increasing the sampling time used to obtain the traffic scenarios. However, due to the fast acceleration and braking cycles in MTSs, it is not clear to which extent the sampling time may be increased. In the majority of cases, this parameter is simply set to 1 s. To tackle this concern, this paper presents a compression algorithm which makes it possible to thoroughly reduce the number of snapshots to be included in a given traffic scenario with good energy-saving accuracy figures. The traffic-scenario compressor presented is performed in two stages: a first step finds clusters of similar snapshots in the uncompressed traffic scenario; then a second stage searches for a specific set of trains’ positions and powers that may be directly included in the traffic model used in the optimisation study. The results obtained have shown that the compressor makes it possible to obtain an 80 optimisation-time reduction for a given traffic scenario with a total energy-saving error lower than 5.
Descripción : Artículos en revistas
URI : https:doi.org10.1016j.ijepes.2016.12.007
ISSN : 0142-0615
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-17-006A.pdf3,34 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.