Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/16377
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFitiwi Zahlay, Destaes-ES
dc.contributor.authorSantos, Sérgio F.es-ES
dc.contributor.authorBizuayehu, Abebe Workees-ES
dc.contributor.authorShafie-khah, Miadrezaes-ES
dc.contributor.authorCatalão, João P. S.es-ES
dc.date.accessioned2017-01-26T04:08:55Z-
dc.date.available2017-01-26T04:08:55Z-
dc.date.issued2016-11-14es_ES
dc.identifier.urihttp://hdl.handle.net/11531/16377-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractThis paper presents a new dynamic and stochastic decision supporting model for distributed generation investment planning (DGIP). The model is formulated as a mixed integer linear programming (MILP) optimization problem that simultaneously minimizes emission, operation and maintenance, as well as reliability costs. One of the salient features of the model is that it is based on a two-period planning horizon: a short-term planning period that requires robust decisions to be made and a medium to long-term one involving exploratory or flexible investment decisions. Each period has multiple decision stages. The operational variability introduced by intermittent generation sources and electricity demand are accounted for via probabilistic methods. To ensure computational tractability, the associated operational states are reduced via a clustering technique. Moreover, uncertainties related to emission price, demand growth and the unpredictability of intermittent generation sources are taken into account stochastically. A real-life distribution network system is used as a case study, and the results of our analyses generally show the efficacy of the proposed model.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherInstitute of Electrical and Electronics Engineers Power and Energy Society (Boston, Estados Unidos de América)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: IEEE Power & Energy Society General Meeting - IEEE PES GM 2016, Página inicial: 1-5, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleA new dynamic and stochastic distributed generation investment planning model with recoursees_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsDistributed generation; DG investment planning; distribution network systems; stochastic programming; uncertaintyen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-16-181A.pdf433,04 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.