Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/24583
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorMuñoz San Roque, Antonio-
dc.contributor.authorMasilamani, Sivaprasanth-
dc.contributor.otherUniversidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)es_ES
dc.date.accessioned2017-12-19T09:30:20Z-
dc.date.available2017-12-19T09:30:20Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/11531/24583-
dc.descriptionMaster in the Electric Power Industryes_ES
dc.description.abstractThis study improves the Short term wind power forecasting to help bid the wind power in the electricity market. Supplying power lesser/greater than the expected power creates imbalance in the Electricity system. Hence electricity markets impose penalty for supplying power lesser/greater than expected power. Bidding right amount of power is an important issue for the electricity power producers. This issue is very relevant for a wind power producer due to the inherent nature of wind. Wind is characterised by uncertainty and volatility. This study proposes hybrid approaches that use the meteorological forecast of wind power and statistical models to improve the accuracy of the wind power forecast over meteorological forecast. The statistical methods used in the study are linear regression model, Artificial Neural Network (ANN), Support Vector Machine (SVM) and K-Nearest Neighbour. The production data of ten wind farms in a portfolio, meteorological forecasts of the ten wind farms, total production of the portfolio and meteorological forecast of total production were collected for 532 days for every hour. These data were used to train and test the hybrid models. These hybrid models are then compared empirically with the meteorological forecasts. It is found that, for the data used for the study, hybrid model using artificial neural network performs the best but only slightly over the linear regression model. Followed by artificial neural network and linear regression model is support vector machine. Followed by support vector machine is K-Nearest Neighbour model. But all the hybrid models performed better than the meteorological forecast of wind power.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenes_ES
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject25 Ciencias de la Tierra y del espacioes_ES
dc.subject2509 Meteorologíaes_ES
dc.subject250911 Predicción operacional metereológicaes_ES
dc.subject33 Ciencias tecnológicases_ES
dc.subject3322 Tecnología energéticaes_ES
dc.subject332205 Fuentes no convencionales de energíaes_ES
dc.titleShort term wind power forecasting using hybrid modelses_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Aparece en las colecciones: H51-Trabajos Fin de Máster

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TFM000830.pdfTrabajo Fin de Máster1,8 MBAdobe PDFVista previa
Visualizar/Abrir
TFM000830 Autorizacion.pdfAutorización115,46 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.