Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/24583
Título : | Short term wind power forecasting using hybrid models |
Autor : | Muñoz San Roque, Antonio Masilamani, Sivaprasanth Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI) |
Palabras clave : | 25 Ciencias de la Tierra y del espacio;2509 Meteorología;250911 Predicción operacional metereológica;33 Ciencias tecnológicas;3322 Tecnología energética;332205 Fuentes no convencionales de energía |
Fecha de publicación : | 2017 |
Resumen : | This study improves the Short term wind power forecasting to help bid the wind power in the electricity market. Supplying power lesser/greater than the expected power creates imbalance in the Electricity system. Hence electricity markets impose penalty for supplying power lesser/greater than expected power. Bidding right amount of power is an important issue for the electricity power producers. This issue is very relevant for a wind power producer due to the inherent nature of wind. Wind is characterised by uncertainty and volatility. This study proposes hybrid approaches that use the meteorological forecast of wind power and statistical models to improve the accuracy of the wind power forecast over meteorological forecast. The statistical methods used in the study are linear regression model, Artificial Neural Network (ANN), Support Vector Machine (SVM) and K-Nearest Neighbour. The production data of ten wind farms in a portfolio, meteorological forecasts of the ten wind farms, total production of the portfolio and meteorological forecast of total production were collected for 532 days for every hour. These data were used to train and test the hybrid models. These hybrid models are then compared empirically with the meteorological forecasts. It is found that, for the data used for the study, hybrid model using artificial neural network performs the best but only slightly over the linear regression model. Followed by artificial neural network and linear regression model is support vector machine. Followed by support vector machine is K-Nearest Neighbour model. But all the hybrid models performed better than the meteorological forecast of wind power. |
Descripción : | Master in the Electric Power Industry |
URI : | http://hdl.handle.net/11531/24583 |
Aparece en las colecciones: | H51-Trabajos Fin de Máster |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TFM000830.pdf | Trabajo Fin de Máster | 1,8 MB | Adobe PDF | Visualizar/Abrir |
TFM000830 Autorizacion.pdf | Autorización | 115,46 kB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.