Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/24706
Título : | Short-term forecasting of electricity prices with a computationally efficient hybrid approach |
Autor : | Marcos Peirotén, Rodrigo Alejandro de Bello Morales, Antonio Reneses Guillén, Javier |
Fecha de publicación : | 6-jun-2017 |
Editorial : | Technische Universität Dresden (Dresde, Alemania) |
Resumen : | Electricity price forecasting models are of great importance for market participants due to their considerable volatility, especially in deregulated and competitive contexts. As a result, these models are highly demanded, especially in day-to-day applications, which require not only accurate results, but also fast responsiveness. Taking these needs into account, this work proposes a novel short-term electricity forecasting approach by means of a hybrid model, combining econometric and fundamental methods. In order to validate this work’s proposed method under complex price dynamics, the model has been tested for the Iberian electricity market case, and further verified by comparing its performance with other, more traditional, forecasting models. |
Descripción : | Capítulos en libros |
URI : | http://hdl.handle.net/11531/24706 |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-17-064A.pdf | 818,67 kB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.