Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/24708
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDimoulkas, Iliases-ES
dc.contributor.authorMazidi, Peymanes-ES
dc.contributor.authorHerre, Lars Finnes-ES
dc.date.accessioned2017-12-21T15:52:57Z-
dc.date.available2017-12-21T15:52:57Z-
dc.date.issued2017-06-06es_ES
dc.identifier.urihttp://hdl.handle.net/11531/24708-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractEnergy forecasting provides essential contribution to integrate renewable energy sources into power systems. Today,renewable energy from wind power is one of the fastest growing means of power generation. As wind power forecast accuracy gains growing significance, the number of models used for forecasting is increasing as well. In this paper, we propose an autoregressive (AR) model that can be used as a benchmark model to validate and rank different forecasting models and their accuracy. The presented paper and research was developed within the scope of the European energy market (EEM) 2017 wind power forecasting competition.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherTechnische Universität Dresden (Dresde, Alemania)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: 14th International Conference on the European Energy Market - EEM17, Página inicial: 1-6, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleEEM 2017 Forecast Competition: Wind power generation prediction using autoregressive modelses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-17-078A.pdf385,44 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.