Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/24721
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Mazidi, Peyman | es-ES |
dc.contributor.author | Du, Mian | es-ES |
dc.contributor.author | Bertling Tjemberg, Lina | es-ES |
dc.contributor.author | Sanz Bobi, Miguel Ángel | es-ES |
dc.date.accessioned | 2017-12-21T15:53:50Z | - |
dc.date.available | 2017-12-21T15:53:50Z | - |
dc.date.issued | 2016-12-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/24721 | - |
dc.description | Capítulos en libros | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | In this paper, a data driven framework for performance and maintenance evaluation (PAME) of wind turbines (WT) is proposed. To develop the framework, SCADA data of WTs are adopted and several parameters are carefully selected to create a normal behavior model. This model which is based on Neural Networks estimates operation of WT and aberrations are collected as deviations. Afterwards, in order to capture patterns of deviations, self-organizing map is applied to cluster the deviations. From investigations on deviations and clustering results, a time-discrete finite state space Markov chain is built for mid-term operation and maintenance evaluation. With the purpose of performance and maintenance assessment, two anomaly indexes are defined and mathematically formulated. Moreover, Production Loss Profit is defined for Preventive Maintenance efficiency assessment. By comparing the indexes calculated for 9 WTs, current performance and maintenance strategies can be evaluated, and results demonstrate capability and effectiveness of the proposed framework. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.publisher | Tsinghua University; Chongqing University (Pekín, China) | es_ES |
dc.rights | es_ES | |
dc.rights.uri | es_ES | |
dc.source | Libro: International Conference on Probabilistic Methods Applied to Power Systems - PMAPS 2016, Página inicial: 1-8, Página final: | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
dc.title | A performance and maintenance evaluation framework for wind turbines | es_ES |
dc.type | info:eu-repo/semantics/bookPart | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | Artificial Intelligence, Maintenance, Markov Processes, Performance Evaluation, Wind Power Generation | en-GB |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-16-143A.pdf | 3,51 MB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.