Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/24721
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMazidi, Peymanes-ES
dc.contributor.authorDu, Mianes-ES
dc.contributor.authorBertling Tjemberg, Linaes-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.date.accessioned2017-12-21T15:53:50Z-
dc.date.available2017-12-21T15:53:50Z-
dc.date.issued2016-12-05es_ES
dc.identifier.urihttp://hdl.handle.net/11531/24721-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractIn this paper, a data driven framework for performance and maintenance evaluation (PAME) of wind turbines (WT) is proposed. To develop the framework, SCADA data of WTs are adopted and several parameters are carefully selected to create a normal behavior model. This model which is based on Neural Networks estimates operation of WT and aberrations are collected as deviations. Afterwards, in order to capture patterns of deviations, self-organizing map is applied to cluster the deviations. From investigations on deviations and clustering results, a time-discrete finite state space Markov chain is built for mid-term operation and maintenance evaluation. With the purpose of performance and maintenance assessment, two anomaly indexes are defined and mathematically formulated. Moreover, Production Loss Profit is defined for Preventive Maintenance efficiency assessment. By comparing the indexes calculated for 9 WTs, current performance and maintenance strategies can be evaluated, and results demonstrate capability and effectiveness of the proposed framework.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherTsinghua University; Chongqing University (Pekín, China)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: International Conference on Probabilistic Methods Applied to Power Systems - PMAPS 2016, Página inicial: 1-8, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleA performance and maintenance evaluation framework for wind turbineses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsArtificial Intelligence, Maintenance, Markov Processes, Performance Evaluation, Wind Power Generationen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-16-143A.pdf3,51 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.