Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/27506
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVallés Rodríguez, Mercedeses-ES
dc.contributor.authorBello Morales, Antonioes-ES
dc.contributor.authorReneses Guillén, Javieres-ES
dc.contributor.authorFrías Marín, Pabloes-ES
dc.date.accessioned2018-06-11T09:08:33Z-
dc.date.available2018-06-11T09:08:33Z-
dc.date.issued2018-04-15es_ES
dc.identifier.issn0306-2619es_ES
dc.identifier.urihttps:doi.org10.1016j.apenergy.2018.02.058es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractWithin a framework of assessment of demand response as an efficient flexibility resource for electric power systems, the main objective of this paper is to present an empirical methodology to obtain a full characterization of residential consumers’ flexibility in response to economic incentives. The aim of the proposed methodology is to assist a hypothetical demand response provider in the task of quantifying flexibility of a real population of consumers during a supposed trial that would precede a large-scale implementation of a demand response program. For this purpose, mere average values of predictable responsiveness do not provide meaningful information about the uncertainties associated to human behavior so a probabilistic characterization of this flexibility based on Quantile Regression (QR) is suggested. The proposed usage of QR to model individual observed flexibility provides a concise parametric representation of consumers that allows a straightforward application of classification methods to partition the sample of consumers into categories of similar flexibility. The modelling approach presented here also depicts a full picture of uncertainty and variability of the expected flexibility and enables the definition of two specific risk measures for the context of demand response that have been denominated flexibility at risk (FaR) and conditional flexibility at risk (CFaR). The application of the methodology to a case study based on a real demand response experience in Spain illustrates the potential of the method to capture the complexity and variability of consumer responsiveness. The particular case study presented here shows non-intuitive shapes in the individual conditional distribution functions of flexibility and a potential high variability between different individual flexibility profiles. It also demonstrates the possible decisive influence that interaction effects between socio-economic factors, such as the number of occupants, the business as usual electricity consumption and the education level of consumers, may have on demand responsiveness.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Applied Energy, Periodo: 1, Volumen: online, Número: , Página inicial: 296, Página final: 310es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleProbabilistic characterization of electricity consumer responsiveness to economic incentiveses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsDemand response; Flexibility; Empirical analysis; Probabilistic; Incentives; Elasticity; Quantile regressionen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-18-011A.pdf1,14 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.