Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/36598
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVázquez, Ricardoes-ES
dc.contributor.authorAmarís Duarte, Hortensiaes-ES
dc.contributor.authorAlonso Martínez, Mónicaes-ES
dc.contributor.authorLópez López, Gregorioes-ES
dc.contributor.authorMoreno Novella, Jose Ignacioes-ES
dc.contributor.authorOlmeda Reino, Danieles-ES
dc.contributor.authorCoca Alonso, Javieres-ES
dc.date.accessioned2019-05-09T03:12:42Z-
dc.date.available2019-05-09T03:12:42Z-
dc.date.issued08/02/2017es_ES
dc.identifier.issn1996-1073es_ES
dc.identifier.urihttp://hdl.handle.net/11531/36598-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThis paper presents the implementation of an adaptive load forecasting methodology in two different power networks from a smart grid demonstration project deployed in the region of Madrid, Spain. The paper contains an exhaustive comparative study of different short-term load forecast methodologies, addressing the methods and variables that are more relevant to be applied for the smart grid deployment. The evaluation followed in this paper suggests that the performance of the different methods depends on the conditions of the site in which the smart grid is implemented. It is shown that some non-linear methods, such as support vector machine with a radial basis function kernel and extremely randomized forest offer good performance using only 24 lagged load hourly values, which could be useful when the amount of data available is limited due to communication problems in the smart grid monitoring system. However, it has to be highlighted that, in general, the behavior of different short-term load forecast methodologies is not stable when they are applied to different power networks and that when there is a considerable variability throughout the whole testing period, some methods offer good performance in some situations, but they fail in others. In this paper, an adaptive load forecasting methodology is proposed to address this issue improving the forecasting performance through iterative optimization: in each specific situation, the best short-term load forecast methodology is chosen, resulting in minimum prediction errors.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Energies, Periodo: 1, Volumen: 10, Número: 2, Página inicial: 190-1, Página final: 190-23es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleAssessment of an adaptive load forecasting methodology in a smart grid demonstration projectes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsshort-term load forecasting; smart grids; Machine-to-Machine (M2M) communications; time series; distribution networksen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-17-212A.pdf3,55 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.