Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/40199
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVida Delgado, Rafael Ángeles-ES
dc.date.accessioned2019-09-02T16:10:33Z
dc.date.available2019-09-02T16:10:33Z
dc.date.issued02/03/2020es_ES
dc.identifier.issn0378-4371es_ES
dc.identifier.urihttp://hdl.handle.net/11531/40199
dc.descriptionArtículos en revistases_ES
dc.description.abstractComputer viruses are evolving by developing spreading mechanisms based on the use of multiple vectors of propagation. The use of the social network as an extra vector of attack to penetrate the security measures in IP networks is improving the effectiveness of malware, and have therefore been used by the most aggressive viruses, like Conficker and Stuxnet. In this work we use interdependent networks to model the propagation of these kind of viruses. In particular, we study the propagation of a SIS model on interdependent networks where the state of each node is layer-independent and the dynamics in each network follows either a contact process or a reactive process, with different propagation rates. We apply this study to the case of existing interdependent networks, namely a Spanish scientific community of Statistical Physics, formed by a social network of scientific collaborations and a physical network of connected computers in each institution. We show that the interplay between layers increases dramatically the infectivity of viruses in the long term and their robustness against immunization.es-ES
dc.description.abstractComputer viruses are evolving by developing spreading mechanisms based on the use of multiple vectors of propagation. The use of the social network as an extra vector of attack to penetrate the security measures in IP networks is improving the effectiveness of malware, and have therefore been used by the most aggressive viruses, like Conficker and Stuxnet. In this work we use interdependent networks to model the propagation of these kind of viruses. In particular, we study the propagation of a SIS model on interdependent networks where the state of each node is layer-independent and the dynamics in each network follows either a contact process or a reactive process, with different propagation rates. We apply this study to the case of existing interdependent networks, namely a Spanish scientific community of Statistical Physics, formed by a social network of scientific collaborations and a physical network of connected computers in each institution. We show that the interplay between layers increases dramatically the infectivity of viruses in the long term and their robustness against immunization.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Physica a-Statistical Mechanics And Its Applications, Periodo: 1, Volumen: 421, Número: , Página inicial: 134, Página final: 140es_ES
dc.titleVulnerability of state-interdependent networks under malware spreadinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsMalware, estocástico, modelos, redes complejases-ES
dc.keywordsMalware, stochastic, complex networks, model.en-GB
dc.identifier.doi10.1016/j.physa.2014.11.029
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1310.0741.pdf923,26 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.