Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/40643
Título : Analyzing time period aggregation methods for power system investment and operation models with renewables and storage
Autor : Wogrin, Sonja
Tejada Arango, Diego Alejandro
Pineda Morente, Salvador
Morales González, Juan Miguel
Resumen : 
The transition of the power system from its current state to the power system of the future is heavily influenced by the growing penetration of renewables combined with the increasing importance of storage technologies. We present and compare two different time-period aggregation methods (enhanced representative periods; and, chronological time-period clustering) that allow for the adequate representation of both renewables and storage technologies in power system models. And we assess the quality of both aggregation methods in terms of accurately predicting investment and operating decisions.
URI : http://hdl.handle.net/11531/40643
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-19-081A_abstract.pdf310,48 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.