Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/42079
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorGhandhari Alavijh, Mehrdad-
dc.contributor.authorOluic, Marina-
dc.contributor.otherUniversidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)es_ES
dc.date.accessioned2019-10-04T10:27:19Z-
dc.date.available2019-10-04T10:27:19Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11531/42079-
dc.descriptionTitulación::Doctorado::Programa de Doctorado Erasmus Mundus en Tecnologías y Estrategias Energéticas Sostenibles / Erasmus Mundus Joint Doctorate in Sustainable Energy Technologies and Strategieses_ES
dc.description.abstractAmong a wide variety of topics that are covered by Dynamic Security Assessment (DSA), maintaining synchronous operation and acceptable voltage profiles stand out. These two stability categories are mostly jeopardized in the seconds after a large contingency occurs. Therefore, this thesis tackles the two aspects of large disturbance stability of power systems in the short-term time scale. The classical DSA methods deal with the short-term loss of synchronism by analyzing one operating point and one contingency at a time. However, a small change in operating point may turn a stable system unstable. The first part of the thesis overcomes this gap by proposing the idea of parametrizing the stability boundary. The newly introduced method constructs the parametrized security boundaries in polynomial forms based on a reduced amount of Time Domain Simulation (TDS) data. Such a method retains the positive traits of TDS while being able to estimate a measure of stability even for those points that do not belong to the “training” set. The polynomial coefficients are further improved via SIME parametrization that has a physical meaning. Finally, when being subject to a constraint by the means of Quadratic Programming (QP), SIME parametrization also becomes competitive with direct methods in the sense of conservativeness. Nevertheless, if TDS fails, any TDS-based DSA approach is useless. Most often, the dynamics of the non-linear power system is described by the set of Differential Algebraic Equations (DAE). TDS can face problems when the DAE model experiences singularity due to the loss of voltage causality. This thesis introduces Voltage Impasse Region (VIR) as the state-space area where the voltage causality is lost due to the non-linear modeling of static loads. The entrance of a dynamic trajectory to a VIR was shown to be accompanied by non-convergence issues in TDS and significant drops of voltages. Appropriate Voltage Collapse Indicators (VCIs) are also derived for each load model of interest. The thesis concluded that VIR is a structural problem of the DAE model that should always be accounted for when the short-term stability is assessed.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenes_ES
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject12 Matemáticases_ES
dc.subject1201 Álgebraes_ES
dc.subject120113 Polinomioses_ES
dc.subject22 Físicaes_ES
dc.subject2212 Física teóricaes_ES
dc.subject221203 Energía (física)es_ES
dc.titleDynamic Security Region Assessmentes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsParametrization, Power system transient stability, Security boundary, Short-term voltage instability, Voltage Impasse Region (VIR)es_ES
Aparece en las colecciones: Tesis Doctorales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TD00367.PDFTesis Doctoral7,36 MBAdobe PDFVista previa
Visualizar/Abrir
TD00367 Autorizacion.pdfAutorización991,61 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.