Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/43724
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPortela González, Josées-ES
dc.contributor.authorBello Morales, Antonioes-ES
dc.date.accessioned2019-12-04T03:33:54Z-
dc.date.available2019-12-04T03:33:54Z-
dc.date.issued14/12/2018es_ES
dc.identifier.urihttp://hdl.handle.net/11531/43724-
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractProbabilistic forecasting of electricity prices in the medium term is highly important for operational scheduling, fuel purchasing, trading and profit management. In this context, fundamental models are frequently used, which obtain a probabilistic forecast based on market equilibrium simulations. While they provide insights when structural and regulatory changes are expected to happen in the market, these are not well calibrated to actual data. That is why hybrid methods are a growing research field, whose objective is to aggregate the fundamental forecasts with statistical methods to increase predictive capability. The proposed hybrid approach is to use a functional regression model that estimates the probability density function of the electricity price for each hour using, as explanatory variables, the probabilistic forecasts from the fundamental model. The functional parameters used in the regression are integral operators in the $L^2$ space and, in this approach, the kernels of the operators are modeled as a linear combination of sigmoid functions. The novelty of the method is that, as the endogenous variable is unobserved (only price realizations are known), the parameters are estimated by maximizing the likelihood of the price realizations over the estimated density functions.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherERCIM Working Group on Computational and Methodological Statistics; Universitá di Pisa (Pisa, Italia)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: 11th International Conference of the ERCIM WG on Computational and Methodological Statistics - CMStatistics 2018, Página inicial: 1-1, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleFunctional regression for estimating probability density functions: an application to electricity price forecastinges_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsdensity estimation,forecasting,functional data analysis,regression modelsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-19-084A_abstract.pdf94,19 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.